$UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton 산화방법에 의한 Citric Acid의 분해효율 비교

Comparative Studies Of the $UV/H_2O_2,\;UV/TiO_2/H_2O_2$ and Photo-Fenton Oxidation for Degradation of Citric Acid

  • 서민혜 (아주대학교 환경건설교통공학부) ;
  • 조순행 (아주대학교 환경건설교통공학부) ;
  • 하동윤 (아주대학교 환경건설교통공학부)
  • Seo, Min-Hye (Division of Environmental, Civil and Transportation Engineering, Ajou University) ;
  • Cho, Soon-Haing (Division of Environmental, Civil and Transportation Engineering, Ajou University) ;
  • Ha, Dong-Yun (Division of Environmental, Civil and Transportation Engineering, Ajou University)
  • 발행 : 2006.04.30

초록

화학세정폐수에 함유되어 있는 citric acid의 효율적인 처리방안을 수립하기 위해 $UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton 산화방법을 이용하여 각각 citric acid의 제거효율 및 그에 따른 전력소비량을 평가하였다. 그 결과 조사된 최적 처리조건에서 $UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton 산화방법을 이용한 citric acid 농도에 근거한 TOC 제거효율은 각각 95.5%, 92.3%, 91.5%로 조사되었으며, 그에 따른 전력소비량은 $11.26kWh/m^3,\;3.85kWh/m^3,\;0.799kWh/m^3$으로 조사되었다. 이 결과에 의하면 세가지 광화학적 산화방법 모두 유기물질이 90% 이상 제거되어 citric acid의 분해에 효과적인 것으로 판단되었다. 그러나 Photo-Fenton 산화방법이 다른 방법에 비해 처리에 소요되는 반응시간이 짧은 것으로 나타났다. 또한 광화학적 산화방법의 운영비를 결정짓는데 중요한 요소인 전력소모량 측면에서도 Photo-Fenton 산화방법이 다른 방법에 비해 우수한 것으로 조사되어 본 연구에서 비교하는 세가지 방법 중 citric acid 처리에는 Photo-Fenton 방법이 효율적인면과 경제성면에서 가장 적합한 처리기술로 결론지을 수 있었다.

To establish the efficient treatment technology of chemical cleaning wastewater from power plant, several AOPs($UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton oxidation) were investigated. Treatment efficiencies and the electrical energy requirements based on the EE/O parameter(the electrical energy, required per order of pollutant removal in $1m^3$ wastewater) were evaluated. TOC removal efficiencies of $UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton oxidation at the optimum conditions were 95.5%, 92.3%, 91.5%, respectively. The electrical energy requirements of $UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton oxidation were $11.26kWh/m^3,\;3.85kWh/m^3,\;0.799kWh/m^3$, respectively. From these results, it could be concluded that all of the three oxidation processes were effective for the degradation of citric acid. Considering the treatment efficiency and economical aspect, photo-Fenton oxidation was the most efficient treatment process among the three processes tested.

키워드

참고문헌

  1. 박영우, '화학 세정에 관하여,' 한국부식학회지, 8(3), 1-9(1979)
  2. KEPRI, Development of waste water reuse system for power plant, 148-149(1997)
  3. KEPRI, A Feasibility Study on the Decontamination Technology Development for the RCP and the SG, pp. 69-81(1999)
  4. Gagnon, G. A., et al., 'Carboxylic acid: formation and removal in full-scale plants,' J. of AWWA, 89(8), 88-97(1997) https://doi.org/10.1002/j.1551-8833.1997.tb08279.x
  5. 경규석, 조순행, 최영수, 김동현, 하동윤, 'Oxalic acid와 citric acid의 $TiO_2$ 광촉매에 의한 분해특성 조사,' 대한환경공학회지, 25(3), 393-400(2003)
  6. Lee, H. j., Kang, D. W., Chi, J. H., and Lee, D. H., 'Degradation kinetics of recalcitrant organic compounds in a decontamination process with $UV/H_2O_2$ and $UV/H_2O_2/TiO_2$ Processes,' Korean J. Chem. Eng., 20(3), 503-508(2003) https://doi.org/10.1007/BF02705556
  7. Italo Mazzarino, Paola Piccinini, 'Photocatalytic oxidation of organic acids in aquesous media by a supported catalyst,' Chemical Engineering Science, 54, 3107-3111 (1999) https://doi.org/10.1016/S0009-2509(98)00430-8
  8. EPA, Handbook: Advanced photochemical oxidation process, EPA/625/R-98/004, 1-10(1998)
  9. Andreozzi, R., D'Apuzzo, A., Marotta, R., 'A kinetic model for the degradation of benzothiazole by $Fe^{3+}$-photo-assisted Fenton process in a completely mixed batch reactor,' Journal of Hazardous Materials, 80, 241-257 (2000) https://doi.org/10.1016/S0304-3894(00)00308-3
  10. Andreozzi, R., Caprio, C., Insola, A., and Marotta, R., 'Advanced oxidation process(AOP) for water purification and recovery,' Catalysis Today, 53(1), 51-59(1999) https://doi.org/10.1016/S0920-5861(99)00102-9
  11. Lide, D. R. Jr., Phys., Chem. Ref. Data, 17, 553(1988)
  12. Baxendale, J. H. and Wilson, J. A, 'The photolysis of hydrogen peroxide at high light intensities,' Trans. Faraday Soc., 53, 344(1957)
  13. Lu, M. C., Roam, G. D., Chen, J. N., and Huang, C. P., 'Adsorption characteristics of dichlorovous onto hydrous titanium dioxide surface,' Water Res., 30(7), 881-886 (1996)
  14. Turchi, C. S. and Ollis, D. F., 'Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack,' J. of Catalysis, 122, 178(1990)
  15. Mills, A. and Morris, S., 'Photomineralization of 4-chlorophenol sensitized by titanium dioxide: A study of the initial kinetics of carbon dioxide photogeneration,' J. Photochem. Photobiol. A : Chem., 71, 75(1993) https://doi.org/10.1016/1010-6030(93)87012-C
  16. Pignatello, J. J., 'Dark and photoassisted $Fe^{3+}$-catalyzed degradation of chi oro phenoxy herbicides by hydrogen peroxide,' Environ. Sci. Technol., 26, 1832-1839(1992) https://doi.org/10.1021/es00033a019
  17. Laat, J. D., Gallard, H., Ancelin, S., and Legube, B., 'Comparative study the oxidation of atrazine and acetone by $H_2O_2/UV$, Fe(III)/UV, $Fe(III)/H_2O_2/UV$ and Fe(II) or Fe(III)/$H_2O_2$,' Chemosphere, 39(15), 2693-2706 (1999) https://doi.org/10.1016/S0045-6535(99)00204-0
  18. Bauer, R., Waldner, G., Fallmann, H., Hager, S., Klare, M., Krutzler, T., Malato, S., and Maletzky, P., 'The photo-fenton reaction and the $TiO_2/UV$ process for waste water treatment-novel developments,' Catalysis Today, 53, 131-144(1999) https://doi.org/10.1016/S0920-5861(99)00108-X
  19. Steven L. M., 'Handbook of photochemistry,' Dekker, 118-123(1973)
  20. Bolton, J. R. and Cater, S. R., Homogeneous photodegradation of pollutants in contaminated water : An introduction. In Surface and Aquatic Photochemistry(Edited by Heitz G., Zepp R. G. and Crosby D.), Lewis Publishers, Boca Raton, FL., 467-490(1994)
  21. Bolton, J. R., Bircher, K. G., Tumas, W., and Tolman, C. A., 'Figures of merit for Advanceed Oxidation Technologies,' J. Adv. Oxid. Technol., 1, 13-17(1996)