석탄 화력발전소에서 발생하는 미연분의 특성분석 및 저감방법

Characteristics of Carbonaceous Particles Derived from Coal-fired Power Plant and Their Reduction

  • 박호영 (한전전력연구원 연소열공학그룹) ;
  • 김영주 (한전전력연구원 연소열공학그룹) ;
  • 유근실 (한전전력연구원 연소열공학그룹) ;
  • 김춘근 (한국남동발전(주) 영흥화력) ;
  • 김동훈 (한국남동발전(주) 영흥화력)
  • Park, Ho-Young (Combustion & Thermal Engineering Group, Korea Electric Power Research Institute, KEPCO) ;
  • Kim, Young-Ju (Combustion & Thermal Engineering Group, Korea Electric Power Research Institute, KEPCO) ;
  • Yu, Geun-Sil (Combustion & Thermal Engineering Group, Korea Electric Power Research Institute, KEPCO) ;
  • Kim, Chun-Kun (Nam Dong Power Generation Company, Yong Hung Power Station) ;
  • Kim, Dong-Hun (Nam Dong Power Generation Company, Yong Hung Power Station)
  • 발행 : 2006.10.31

초록

영흥 화력발전소 1호기 보일러에서 발생된 미연분은 석탄 회의 재활용 및 보일러 효율 측면에서 문제를 일으키고 있었다. 본 연구에서는 미연분 및 사용 석탄의 특성과 현장의 연소조건 분석을 수행하고 보일러 운전조건을 변경하므로서 보일러에서 발생되는 미연분을 저감하고자 하였다. 미연분의 물리, 화학적 분석 결과 대부분 중공(中空)형태의 Cenosphere와 뭉쳐진(Agglomerated) 형태의 Soot로 이루어져 있었다. 영흥 화력발전소에서 사용중인 6개 탄종에 대하여 Tar 및 Soot의 발생 가능량을 CPD(Chemical Percolation Devolatilization) 모델을 이용하여 조사한 결과, Sanseo, Ensham, Elk Valley 탄의 경우 그 발생 가능량이 비교적 적었으며 Peabody, Arthur, Shenhua 탄은 높았다. 영흥 화력발전소 1호기 보일러의 각 미분탄 공급관에서의 미분탄 공급량을 측정하였는데 코너 별로 공급되는 몇몇 버너에서 미분탄이 편중되어 공급되고 있음을 알 수 있었다. 이에 따라 soot가 주성분인 미연분의 산화율을 증가시키기 위하여 과잉공기량을 증가시키고 산화제와의 혼합정도를 높이기 위하여 SOFA(Separated Over Fire Air)의 yaw 각도를 적절히 조절함으로서 미연분의 발생량을 현저히 감소시킬 수 있었다.

The unturned carbon in fly ash, recently occurred in the coal-fired Yong Hung power station, caused some problems in ash utilization and boiler efficiency. This paper describes the analysis of unburned carbon and six coals, some tests performed at Yong Hung Boiler, and the results of combustion modification for the reduction of unburned carbon in fly ash. From the physical and chemical analysis of unburned carbon in fly ash, most particles were turned out to be hollow cenosphere and agglomerated soot particles. The sooting potential from six coals used in the plant were investigated with CPD(Chemical Percolation Devolatilization) model. The results showed that the higher potential was presented to Peabody, Arthur, Shenhua coals rather than other coals. It was necessary to measure the coal flow rates at each coal feeding pipe for four burner levels since they affect the extent of mixing of soot with oxidant, in turn, the oxidation rate of soot particles. The unbalance in coal flow rate was found in several coal pipes. We successfully reduced unturned carbon in ash by increasing the excess air and changing the SOFA's yaw angle.

키워드

참고문헌

  1. 한국전력공사, '석탄회 이용가치와 재활용 기술'(1994)
  2. 여수대학교 환경문제연구소, '석탄회의 재활용 타당성 조사' (2000)
  3. 김재관, Private communication(2006)
  4. 대한 주택공사 주택연구소, '플라이애쉬 콘크리트의 특성 및 적용성에 관한 연구' (1999)
  5. Solomon, P. R., Serio, M. A., and Suuberg, E. M., 'Coal Pyrolysis: Experiments, Kinetic Rates and Mechanisms,' Progress in Energy and Combustion Science, 18, 133(1992) https://doi.org/10.1016/0360-1285(92)90021-R
  6. Ma, J., Fletcher, T. H., and Webb, B. W., 'Conversion of coal tar to soot during coal pyrolysis in a post-flame environment,' Twenty-sixth Symposium(International) on Combustion, The Combustion Institute, Pittsburgh, pp. 3161(1996)
  7. Bradley, D., Lawes, M., Park, H. Y., and Usta, N., 'Modeling of laminar pulverized coal flames with speciated devolatilization and comparisons with experiments,' Combustion and Flame, 144, 190-204(2006) https://doi.org/10.1016/j.combustflame.2005.07.007
  8. Solomon, P. R. and Hamblen, D. G., 'Chemistry of Coal Conversion,' Edited by Schlosberg, R. H., pp. 121-251, Plenum, New York(1985)
  9. Smoot, L. G., 'Fundamentals of coal combustion,' pp. 196-237, Elsevier, New York(1993)
  10. 한국전력공사 기술연구원, '석탄화력 최적연소를 위한 미분탄 배분조정연구' (1991)
  11. 이정언, 이재근, '석탄화력발전소에서 생성되는 석탄회에서 Cenosphere 입자의 특성에 관한 연구,' 대한환경공학회지, 22, 1881-1891(2000)
  12. Fletcher, T. H, Ma, J., Rigby, J. R., Brown, A. L., and Webb, B. W., 'Soot in coal combustion system,' Progress in Energy and Combustion Science, 23, 283(1997) https://doi.org/10.1016/S0360-1285(97)00009-9
  13. Veranth, J. M., Fletcher, T. H., Pershing, D. W., Sarofim, A. F., 'Measurement of soot and char in pelverized coal fly ash,' Fuel, 17, 1067-1075(2000)
  14. Lau, C. W. and Niksa, S., 'The impact of soot on the combustion characteristics of coal particles of various types,' Combustion and Flame, 95, 1(1993) https://doi.org/10.1016/0010-2180(93)90048-8
  15. Freihaut, J. D., Proscia, W. M., and Seery, D. J., 'Chemical characteristics of Tars produced in a novel lowseverity, entrained-flow reactor,' Energy and Fuel, 3, 692(1989) https://doi.org/10.1021/ef00018a006
  16. Timothy, L. D., Froelich, D., Sarofim, A. F., and Beer, J. M., 'Soot formation and burnout during the combustion of dispersed pulverised coal particles,' Twenty-First Symposium(International) on Combustion, The Combustion Institute, Pittsburgh, 1141(1986)
  17. Ma, J., Fletcher, T. H., and Webb, B. W., 'Conversion of coal tar to soot during coal pyrolysis in a post-flame environment,' Twenty-sixth Symposium(International) on Combustion, The Combustion Institute, Pittsburgh, 3161 (1996) https://doi.org/10.1016/S0082-0784(96)80161-5
  18. Brown, A. L. and Fletcher, T. H., 'Modeling soot in coal combustion flames,' Western states section of the Combustion Institute, Los Angeles, CA(1996)
  19. Bradley, D., Dixon-Lewis, G., El-Habik, S., and Mushi, E. M. J., 'The Oxidation of Graphite Powder in Flame Reaction Zones,' Twentieth Symposium(International) on Combustion, The Combustion Institute, Pittsburgh, 931 (1984)
  20. Pederson, L. S., Glarborg, P., Dam-Johansen, K., Hepburn, P. W., and Hessel, M. G., 'A chemical Engineering model for predicting NO emissions and burnout from pulverised coal flames,' Combustion Science and Technology, 132, 251(1998) https://doi.org/10.1080/00102209808952017
  21. Merrick, D., 'Mathematical Models of the Thermal Decomposition of Coal 1. The Evolution of Volatile Matter,' Fuel, 62, 535(1983)