퇴적물로부터 인 용출 저감을 위한 Brucite 처리

Brucite Treatment to Reduce Phosphorus Release from Polluted Sediments

  • 이미경 (한국수자원공사 시화호환경연구소) ;
  • 최광순 (한국수자원공사 시화호환경연구소) ;
  • 김세원 (한국수자원공사 시화호환경연구소) ;
  • 오영택 (한국수자원공사 시화호환경연구소) ;
  • 권혁재 (한국수자원공사 시화호환경연구소) ;
  • 김동섭 (한국수자원공사 시화호환경연구소)
  • Lee, Mi-Kyung (Lake Sihwa Environmental Research Center, Korea Water Resources Corporation) ;
  • Choi, Kwang-Soon (Lake Sihwa Environmental Research Center, Korea Water Resources Corporation) ;
  • Kim, Sea-Won (Lake Sihwa Environmental Research Center, Korea Water Resources Corporation) ;
  • Oh, Young-Taek (Lake Sihwa Environmental Research Center, Korea Water Resources Corporation) ;
  • Kwon, Hyuck-Jae (Lake Sihwa Environmental Research Center, Korea Water Resources Corporation) ;
  • Kim, Dong-Sup (Lake Sihwa Environmental Research Center, Korea Water Resources Corporation)
  • 발행 : 2006.11.30

초록

오염된 퇴적물로부터 인 용출 저감을 위한 최적의 capping 소재를 개발하기 위해 lab-scale 실험을 25 L 아크릴 컬럼을 이용하여 실시하였다. 실험에 사용된 퇴적물 내 입도는 8.8 $\Phi$로 매우 세립한 clay로 조성되어 있으며, 유기탄소 함량($C_{org}$)은 2%로 높다. Batch 실험에 사용된 capping 소재는 Brucite($Mg(OH)_2$), Sea sand($SiO_2$), Granular-gypsum($CaSO_4{\cdot}2H_2O$), Double layer(brucite+sand)와 Control을 30일 동안 비교 평가하였다. 실험기간 동안 용출된 인의 flux는 14.6 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, 9.5 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, 5.2 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, 4.2 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, 3.1 $mg{\cdot}m^{-2}{\cdot}d^{-1}$로 Control>Sea sand>Granular-gypsum>Double layer>Brucite 순으로 각각 나타났다. Brucite를 적용한 컬럼의 경우, 인 용출 제어 효율이 70% 이상 높게 나타났으며, Sea sand를 적용한 경우에는 35%의 효율만을 보였다. 특히, Brucite를 적용한 컬럼의 표층 퇴적물내 pH는 $8.0{\sim}9.5$로 다소 높게 유지되었으며, 이러한 효과는 퇴적물을 약알카리성으로 유지하여 황산염환원균이 증식할 수 없는 환경을 조성하여 생물에 독성이 있는 $H_2S$ 발생을 억제시킬 수 있다. Gypsum을 적용할 경우, 퇴적물내 빠른 초기 속성화작용의 진행과 충분한 $SO_4^{2-}$-의 공급으로 methanogenesis 진행를 저하시킬 수 있다. 따라서 Brucite와 Gypsum을 적용할 경우, 퇴적물 내 인의 존재형태가 광물(mineral)의 형태인 $Mg_5(OH)(PO_4)_3$, pyrite, apatite-mineral의 형태로 진행되어 퇴적물로부터 인의 용출을 줄일 수 있다.

Lab-scale batch experiments using several 25-L transparent acrylic reactors were conducted to develop optimum capping materials that can reduce phosphorus released from polluted sediments. The sediment used in the experiment was very fine clay(8.8 $\Phi$ in mean grain size), and organic carbon($C_{org}$) content was as high as 2%. Four kinds of batches with different capping materials Brucite($Mg(OH)_2$), Sea sand($SiO_2$), Granular-gypsum($CaSO_4{\cdot}2H_2O$), Double layer(brucite+sand), and one control batch were operated for 30 days. Phosphorus fluxes released from bottom sediments in the control batch were estimated to be 14.6 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, while 9.5 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, 5.2 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, 4.2 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, and 3.1 $mg{\cdot}m^{-2}{\cdot}d^{-1}$ in the batch capped with Sea sand, Granular-gypsum, Double layer, and Brucite, respectively. The results obtained from lab-scale batch experiments show that there were 70% reduction of phosphorus for some materials such as Brucite, Double layer(brucite+sand), and whereas sea sand only about 35%. The pH range of surface sediment to which Brucite was applied showed about $8.0{\sim}9.5$ in the weak alkaline state. This effect can prevent liberation of $H_2O$. The addition of gypsum into the sediment can reduce the progress of methanogenesis because of fast early diagenesis and sufficient supply of $SO_4^{2-}$ to the sediments, stimulate the SRB highly. Therefore, the application of Brucite and Gypsum can reduce phosphorus release from the sediment as a result of formation of $Mg_5(OH)(PO_4)_3$, pyrite($FeS_x$), and apatite-mineral.

키워드

참고문헌

  1. Gilmour, C., 'Effects of acid deposition on microbial processes in natural,' In: Mitchell R., (Ed.). Environmental microbiology. Division of Applied Sciences, Harvard University. Cambridge, MA: Wiley-Liss.Inc., 33 - 57(1992)
  2. Kotama, T., 'Biochemical reduction process in the lake sediment-water interface,' on the basis of laboratory experiment, Verh Internal Verein Limnol., 24, 3036 - 3043 (1991)
  3. Assessment and remediation of contaminated sediments (ARCS) program remediation guidance document, III : Great lakes national program, US EPA(EPA 905-B94-003), Chicago(1994)
  4. James, D. Q., Heather, M. V., Joseph, E. M., and Lqwrenee, J. M., 'Pilot-scale demonstration of in-situ capping of PCB-containing sediments in the lower grasse river,' Remediation, Wiley Periodical, Inc. 33 - 53(2003) https://doi.org/10.1002/rem.10093
  5. Schaanning, M., Breyholtz, B., and Skei, J., 'Experimental results on effects of capping on fluxes of persistent organic poliutants(POPs) from historically contaminated sediments,' Marine Chemistry, 3, 14-28(2006)
  6. Jose, J. Z., Alex, M., Alena, R., and Tim, P., 'Assessment of sediment and porewater after one year of subaqueous capping of contaminated sediments in Hamilton Harbour, Canada,' Water Science and Technology, 37, 323 - 329(1998) https://doi.org/10.1016/S0273-1223(98)00214-5
  7. Patrick, J. and Ulrich. F., 'Concept of subaqueous capping of contaminated sediments with active barrier systems( ABS) using natural and modified zeolites,' Water Research, 33(9), 2083 -2087(1999) https://doi.org/10.1016/S0043-1354(98)00432-1
  8. Gerlinds, W., Thomas, G., and Klaus, K., 'Sediment treatment with a nitrate-storing compound to reduce phosphorus release,' Water Research, 39, 494 - 500(2005) https://doi.org/10.1016/j.watres.2004.10.017
  9. 김석구, 이미경, 안재환, 윤상린, 김소정, '호소퇴적물로 부터 인 용출 저감을 위한 capping 처리,' 대한환경공학회지, 28(4), 438-446(2006)
  10. 김건하, 정우혁, 최승희, '호소 저니의 인 용출 제어를 위 한 모래 캡핑,' 대한토목학회지, 26, 125 -130(2006)
  11. Froelich, P. N., Klinkharmmer, G. P., Bender, Luedtke, N. A., Heath, G. R., and Cullen, D., 'Early oxidation of organic matter in pelagic sediments of the eastern Equator Atlantic: suboxic diagenesis,' Geochim. Cosmochim. Acta, 43, 1075 - 1090(1979) https://doi.org/10.1016/0016-7037(79)90095-4
  12. APHA, AWWA and WEF, Standard Methods for Examination of Water and Wastewater, 20th edition, Washington D.C., USA(1998)
  13. Kim, L. H., Choi, E., and Stenstrom, M. K., 'Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments,' Chemosphere, 50, 53 -61(2003) https://doi.org/10.1016/S0045-6535(02)00310-7
  14. Lee, J. H. W., Hodgkiss, K. J., and Wong, K. T. M., 'Real time observations of coastal algal blooms by an early warning system,' Estuarine Coastal and Shelf Science, 172- 190(2005)
  15. Stumm, W. and Morgan, J. J., 'Aquatic chemistry,' Wiley Interscience, New York, 3rd ed., 583(1996)
  16. Eila, V., Anu L., Veli-Pekka, S., and Pertti, J. M., 'A new gypsum-based technique to reduce methane and phosphorus release form sediments of eutrophied lakes:(Gypsum treatment to reduce internal loading),' Water Research, 37, 1-10(2003) https://doi.org/10.1016/S0043-1354(02)00264-6