Effects of the Fermented Milk Intake on Human Antioxidant Activity and Blood Alcohol Concentration

  • Nam, Hae-Seon (Department of Clinical Parasitology, College of Medicine, Soonchunhyang University) ;
  • Lee, Kyong-Ae (Department of Food Science and Nutrition, College of Natural Science) ;
  • Lee, Yong-Jin (Department of Industrial Medicine, College of Medicine, Soonchunhyang University) ;
  • Kim, Yong-Bae (Department of Preventive Medicine, College of Medicine, Soonchunhyang University) ;
  • Kim, Sung-Ho (Medical Science and Technology Center, College of Medicine, Soonchunhyang University) ;
  • Lee, Sang-Han (Medical Science and Technology Center, College of Medicine, Soonchunhyang University) ;
  • Lee, Sun-Hwa (Department of Clinical Parasitology, College of Medicine, Soonchunhyang University) ;
  • Lee, Yoon-Jin (Medical Science and Technology Center, College of Medicine, Soonchunhyang University) ;
  • Kim, Ho-Young (Department of Clinical Parasitology, College of Medicine, Soonchunhyang University) ;
  • Ahn, Young-Tae (Research & Development Center, Korea Yakult Co., Ltd.) ;
  • Lim, Kwang-Sei (Research & Development Center, Korea Yakult Co., Ltd.) ;
  • Huh, Chul-Sung (Research & Development Center, Korea Yakult Co., Ltd.)
  • Published : 2006.02.28

Abstract

Randomized, double-blinded, placebo-controlled, cross-over clinical trial was performed to assess effects of fermented milk intake on antioxidant activities and blood alcohol levels of 26 healthy volunteers. All subjects received fermented milk ($Kupffer's^{(R)}$, n=13) or placebo (n=13) twice daily for 2 weeks. After 3 weeks resting period, subjects under same test but in reverse role. In both tests, fermented milk intake significantly increased total antioxidant status (p<0.05) and decreased thiobarbituric acid reactive substance (p<0.05) levels compared to before fermented milk intake. Blood alcohol levels of fermented milk intake group were significantly lower than those of placebo group (p<0.05).

Keywords

References

  1. Jung BS. Metabolic effects of alcohol. Korean J. Soc. Food Sci. Nut. 4: 207-211 (1991)
  2. Simic MG Mechanisms of inhibition of free-radical processed in mutagenesis and carcinogensis. Mutat. Res. 202: 377-386 (1988) https://doi.org/10.1016/0027-5107(88)90199-6
  3. Lin MY, Yen CL. Inhibition of lipid peroxidation by Lactobacillus acidophilus and Bifidobacterium longum. J. Agric. Food Chem. 47: 3661-3664 (1999) https://doi.org/10.1021/jf981235l
  4. Ito M, Ohishi K, Yoshida, Y, Yoki W, Sawada H. Antioxidative effects of lactic acid bacteria on the colonic mucosa of ironoverloaded mice. J. Agric. Food. Chem. 51: 4456-4460 (2003) https://doi.org/10.1021/jf0261957
  5. Jayaprakasha HM, Yoon YC, Paik HD. Probiotic functional dairy foods and health claims: an overview. Food Sci. Biotechnol. 14: 523-528 (2005)
  6. Kim SJ. Potential probiotic properties of lactic acid bacterial isolated from Kimchi. Food Sci. Biotechnol. 14: 547-550 (2005)
  7. Lin MY, Yen CL. Reactive oxygen species and lipid peroxidation product-scavenging ability of yogurt organisms. J. Dairy Sci. 82: 1629-1634 (1999) https://doi.org/10.3168/jds.S0022-0302(99)75391-9
  8. Lin MY, Yen CL. Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem. 47: 1460-1466 (1999) https://doi.org/10.1021/jf981149l
  9. Han SY, Huh CS, Ahn YT, Lim KS, Baek YJ, Kim DH. Hepatoprotective effect oflactic acid bacteria. J. Microbiol. Biotechnol. 15: 887-890 (2005)
  10. Kullisaar T, Songisepp E, Mikelsaar M, Zilmer K, Vihalemm T, Zilmer M. Antioxidative probiotic fermented goats' milk decreases oxidative stress-mediated atherogenicity in human subjects. Br. J. Nutr. 90: 449-456 (2003) https://doi.org/10.1079/BJN2003896
  11. Girven A, Guven A, Gulmez M. The effect of Kefir on the activities of GSH-Px, GST, CAT, GSH and LPO levels in carbon tetrachlorideinduced mice tissues. J. Vet. Med. 50: 412-416 (2003) https://doi.org/10.1046/j.1439-0450.2003.00693.x
  12. Ahn YT, Bae JS, Kim YH, Lim KS, Huh CS. Effect of fermented milk intake on hepatic antioxidative systems in alcohol treated rats. Korean J. Food Sci. Technol. 37: 631-635 (2005)
  13. Nosova T, Jousimies-Somer H, Jokelainen K, Heine R, Salaspuro M. Acetaldehyde production and metabolism by human indigenous and probiotic Lactobacillus and Bifidobacterium strains. Alcohol Alcohlism 35: 561-568 (2000) https://doi.org/10.1093/alcalc/35.6.561
  14. Ahn YT, Kim YH, Bae JS, Lim KS, Huh CS, Yang WY, Kim HY, Baek YJ. Effect of Lactobacillus brevis HY7401 intake on the serum ethanol concentration in rats. Korean J. Food Sci. Technol. 36: 604-608 (2004)
  15. Yang WY, Ahn YT, Lim KS, Huh CS, Baek YJ, Kim HS. Ethanol metabolism by probiotic lactic acid bacteria in vivo (abstract no W288). In: 2004 Joint Annual Meeting. July 25-29, America's Center, St. Louis, Missouri, USA. American Dairy Science Association, American Society of Animal Science, and Poultry Science Association, USA (2004)
  16. Han SY, Huh CS, Ahn YT, Lim KS, Baek YJ, Kim DH. Hepatoprotective effect of lactic acid bacteria, inhibitors of B-glucuronidase production against intestinal microflora. Arch. Pharm. Res. 28: 325329 (2005)
  17. Okamoto G, Hayase F, Kato H. Scavenging of active oxygens species by glycated protein. Biosci. Biotech. Biochem. 56: 928-931 (1992) https://doi.org/10.1271/bbb.56.928
  18. Terasawa N, Murta M, Homma S. Separation of model melanoidin into components with copper chelating Sepharose 6B column chromatography and comparison of chelating activity. Agric. Biol. Chem. 55: 1507-1514 (1991) https://doi.org/10.1271/bbb1961.55.1507
  19. Yoshimura Y, Iijima T, Watanabe T, Nakazawa H. Antioxidative effect of Maillard reaction products using glucose-glycine model system. J. Agric. Food Chem. 45: 4106-4109 (1997) https://doi.org/10.1021/jf9609845
  20. Nosova T, Jokelainen K, Kaihovaara P, Jousimies-Somer H, Siitonen A, Heine R, Salaspuro M. Aldehyde dehydrogenase activity and acetate production by aerobic bacteria representing the normal flora of human large intestine. Alcohol Alcohlism 31: 555-564 (1996) https://doi.org/10.1093/oxfordjournals.alcalc.a008191
  21. Salaspuro M. Microbial metabolism of ethanol and acetaldehyde and clinical consequences. Addict. Biol, 2: 35-46 (1997) https://doi.org/10.1080/13556219772840
  22. Tillonen J, Homann N, Rautio M, Jousimies-Somer H, Sa1aspuro M. Ciprofloxacin decreases the rate of ethanol elimination in humans. Gut 44: 347-352 (1999) https://doi.org/10.1136/gut.44.3.347
  23. Nosova T, Jokelainen K, Kaihovaara P, Vakevainen S, Rautio M, Jousimies-Somer H, Salaspuro M. Ciprofloxacin administration decreases enhanced ethanol elimination in ethanol-fed rats. Alcohol Alcohlism. 34: 48-54 (1999) https://doi.org/10.1093/alcalc/34.1.48