Food-Grade Expression and Secretion Systems in Lactococcus

  • Jeong, Do-Won (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Hwang, Eun-Sun (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Lee, Hyong-Joo (School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
  • Published : 2006.08.30

Abstract

Lactococcus species are noninvasive and nonpathogenic microorganisms that are widely used in industrial food fermentation and as well-known probiotics. They have been modified by traditional methods and genetic engineering to produce useful food-grade materials. The application of genetically modified lactococci in the food industry requires their genetic elements to be safe and stable from integration with endogenous food microorganisms. In addition, selection for antibiotic-resistance genes should be avoided. Several expression and secretion signals have been developed for the production and secretion of useful proteins in lactococci. Food-grade systems composed of genetic elements from lactic acid bacteria have been developed. Recent developments in this area have focused on food-grade selection markers, stabilization, and integration strategies, as well as approaches for controlled gene expression and secretion of foreign proteins. This paper reviews the expression and secretion signals available in lactococci and the development of food-grade markers, food-grade cloning vectors, and integrative food-grade systems.

Keywords

References

  1. Hozapfel WH, Habere P, Geisen R, Bjorkroth J, Schillinger U. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr. 73: 365S-373S (2001) https://doi.org/10.1093/ajcn/73.2.365s
  2. Bengmark S, Martindale R. Prebiotics and synbiotics in clinical medicince. Nutr. Clin. Pract. 20: 244-261 (2005) https://doi.org/10.1177/0115426505020002244
  3. Hwang K-T, Lee W, Kim G-Y, Lee S-K, Lee J, Jun W. The binding of aflatoxin $B_{1}$ modulates the adhesion properties of Lactobacillus casei KCTC 3260 to a HT29 colon cancer cell line. Food Sci. Biotechnol. 15: 227-231 (2006)
  4. Lee N-K, Kim H-W, Chang H-I, Yun C-W, Kim S-W, Kang C-W, Paik H-D. Probiotic propel1ies of Lactobacillus plantarum NK181 isolated from Jeotgal. a Korean fermented food. Food Sci. Biotechnol. 15: 227-231 (2006)
  5. Lee N-K, Kim T-H, Choi S-Y, Lee SK, Paik H-D. Identification and probiotic properties or Lactococcus lactis NK24 isolated from Jeotgal, a Korean fermented food. Food Sci. Biotechnol. 13: 411-416 (2004)
  6. Shanahan F. Probiotics in inflammatory bowel disease-therapeutic rationale and role. Adv. Drug Deliver. Rev. 56: 809-818 (2004) https://doi.org/10.1016/j.addr.2003.11.003
  7. Cunningham-Rundles S. The eflect of aging on mucosal host defense. J. Nutr. Health Aging 8: 20-25 (2004)
  8. Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3: 777-788 (2005) https://doi.org/10.1038/nrmicro1273
  9. Cross ML. Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunol. Med. Mic. 34: 245-253 (2002) https://doi.org/10.1111/j.1574-695X.2002.tb00632.x
  10. Kim JY, Lee S, Jeong D-W, Hachimura S, Kaminogawa S, Lee HJ. Effects of intraperioneal administration of Lactococcus lactis ssp. lactis ccllular fraction of immune response. Food Sci. Biotechnol. 14: 405-409 (2005)
  11. Sablon E, Contreras B, Vandamme E. Antimicrobial peptide of lactic acid bacteria: mode of action, genetic and biosynthesis. Adv. Biochem. Eng. Biotechnol. 68: 21-60 (2002)
  12. Giuliano M, Schiraldi C, Marotta MR, Hugenholtz J, de Rosa M. Expression of Sulfalobus solfataricus ${\alpha}$-glucosidase in Lactococcus lactis. Appl. Microbiol. Biot. 64: 829-832 (2004) https://doi.org/10.1007/s00253-003-1493-2
  13. Simons G, Rutten G, Hornes M, Mijhuis M, van Asseldonk M. Production of prochymosin in lactococci. Adv. Exp. Med. Biol. 306: 115-119 (1991)
  14. Drouault S, Corthier G, Ehrlich SD, Renault P. Expression of the Staphylococcus hyicus lipase in Lactococcus lactis. Appl. Environ. Microbiol. 66: 588-598 (2000) https://doi.org/10.1128/AEM.66.2.588-598.2000
  15. Bermudez-Humaran LG, Langella P, Miyoshi A, Gruss A, Guerra RT, Montes de Oea-Luna R, Le Loir Y. Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl. Environ. Microbiol. 68: 917-922 (2002) https://doi.org/10.1128/AEM.68.2.917-922.2002
  16. Arnau J, Hjerl-Hansen E, Israelsen H. Heterologous gene expression of bovine plasmin in Lactococcus lactis. Appl. Microbiol. Biot. 48: 331-338 (1997) https://doi.org/10.1007/s002530051058
  17. Wells JM, Wilson PW, Norton PM, Gasson MJ, Le Page RW. Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge. Mol. Microbiol. 8: 1155-1162 (1993) https://doi.org/10.1111/j.1365-2958.1993.tb01660.x
  18. Ribeiro LA, Azevedo V, Le Loir Y, Oliveira SC, Dieye Y, Piard JC, Gruss A, Langella P. Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl. Environ. Microbiol. 68: 910-916 (2002) https://doi.org/10.1128/AEM.68.2.910-916.2002
  19. Bermudez-Humaran LG, Langella P, Cortes-Perez NG, Gruss A, Tamez-Guerra RS, Oliveira SC, Saucedo-Cardenas O, Montes de Oca-Luna R, Le Loir Y. Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production. Infect. Immun. 71: 1887-1896 (2003) https://doi.org/10.1128/IAI.71.4.1887-1896.2003
  20. Bermudez-Humaran LG, Langella P, Commissaire J, Gilbert S, Le Loir Y, L'Haridon R, Corthier G. Controlled intra-or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis. FEMS Microbiol. Lett. 224: 307-313 (2003) https://doi.org/10.1016/S0378-1097(03)00475-0
  21. Chatel JM, Langella P, Adel-Patient K, Commissaire J, Wal JM, Corthier G. Induction of mucosal immune response after intranasal or oral inoculation of mice with Lactococcus lactis producing bovine beta-lactoglobulin. Clin. Diagn. Lab. Immunol. 8: 545-551 (2001)
  22. Steidler L, Robinson K, Chamberlain L, Schofield KM, Remaut E, Le Page RW, Wells JM. Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect. lmmun. 66: 3183-3189 (1998)
  23. Kahala M, Paiva A. The expression signals of the Lactobacillus brevis slpA gene direct efficient heterologous protein production in lactic acid bacteria. Appl. Microbiol. Biot. 51: 71-78 (1999) https://doi.org/10.1007/s002530051365
  24. Enouf V, Langella P, Commissaire J, Cohen J, Corthier G. Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Appl. Environ. Microbiol. 67: 1423-1428 (2001) https://doi.org/10.1128/AEM.67.4.1423-1428.2001
  25. Gaeng S, Scherer S, Neve H, Loessner MJ. Gene cloning and expression and secretion of Listeria monocytogenes bacteriophagelytic enzymes in Lactococcus lactis. Appl. Environ. Microbiol. 66: 2951-2958 (2000) https://doi.org/10.1128/AEM.66.7.2951-2958.2000
  26. Gil MT, Perez-Arellano I, Buesa J, Perez-Martinez G. Secretion of the rotavirus VP8 protein in Lactococcus lactis. FEMS Microbiol. Lett. 203: 269-274 (2001) https://doi.org/10.1016/S0378-1097(01)00367-6
  27. Schleifer K-H, Kraus J, Dvorak C, Killper-Balz R, Collins MD, Fischer W. Transfer of Streptococcus lactis and related streptococci to the genes Lactococcus. Syst. Appl. Mierobiol. 6: 183-195 (1985) https://doi.org/10.1016/S0723-2020(85)80052-7
  28. Williams AM, Fryer JL, Collins MD. Lactococcus piscium sp. nov. a new Lactococcus species from salmonid fish. FEMS Microbiol. Lett. 68: 109-114 (1990) https://doi.org/10.1111/j.1574-6968.1990.tb04132.x
  29. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. II: 731-753 (2001)
  30. de Vos WM, Kleerebczcm M, Kuipers OP. Expression systems for industrial Gram-positive bacteria with low guanine and cytosine content. Curr. Opin. Biotech. 8: 547-553 (1997) https://doi.org/10.1016/S0958-1669(97)80027-4
  31. de Vos WM, Simons G. Gene cloning and expression systems in Lactococci. pp. 52-105. In: Genetics and Biotechnology of Lactic Acid Bacteria. Gasson MJ, de Vos WM (eds). Chapman & Hall, London, UK (1994)
  32. Mercenier A, Pouwels PH, Chassy BM. Genetics engineering of lactobacilli, leuconostocs and Streptococcus thermophilus. pp. 252-293. In: Genetics and Biotechnology of Lactic Acid Bacteria. Gasson MJ, de Vos WM (eds). Chapman & Hall, London, UK (1994)
  33. Pouwels PH, Leer RJ. Genetics of lactobacilli. Plasmids and gene expression. Antonie van Leeuwenhoek 64: 85-107 (1993)
  34. de Vos WM. Gene expression systems for lactic acid bacteria. Curr. Opin. Microbiol. 2: 289-295 (1999) https://doi.org/10.1016/S1369-5274(99)80050-2
  35. Gasson MJ, de Vos WM. Genetics and biotechnology of lactic acid bacteria. Chapman & Hall, London, UK. pp. 1-245 (1994)
  36. de Vos WM, Vaughan EE. Genetics of lactose utilization in lactic acid bacteria. FEMS Microbiol. Rev. 15: 217-237 (1994) https://doi.org/10.1111/j.1574-6976.1994.tb00136.x
  37. Hugenholtz J, Smid EJ. Nutraceutical production with food-grade microorganisms. Curr. Opin. Biotech. 13: 497-507 (2002) https://doi.org/10.1016/S0958-1669(02)00367-1
  38. Kuipres OP, de Ruyter PG, Kleerebezem M, de Vos WM. Controlled overproduction of proteins by lactic acid bacteria. Trends Biotechnol. 15: 135-140 (1997) https://doi.org/10.1016/S0167-7799(97)01029-9
  39. Ouwehand AC, Salminen S, Isolauri E. Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek 82: 279-289 (2002) https://doi.org/10.1023/A:1020620607611
  40. Robinson K, Chamberlain LM, Schotleld KM, Wells JM, Le Page RW. Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat. Biotechnol. 15: 653-657 (1997) https://doi.org/10.1038/nbt0797-653
  41. Roy DG, Klaenhammer TR, Hassan HM. Cloning and expression of the manganese superoxide dismutase gene of Escherichia coli in Lacotoccus lactis and Lactobacillus gasseri. Mol. Gen. Genet. 239: 33-40 (1993)
  42. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289: 1352-1355 (2000) https://doi.org/10.1126/science.289.5483.1352
  43. Leenhouts K, Buist G, Bolhuis A, ten Berge A, Kiel J, Miereau I, Dabrowska M, Venema G, Kok J. A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol. Gen. Genet. 253: 217-224 (1996) https://doi.org/10.1007/s004380050315
  44. de Vos WM. Gene cloning and expression in lactic streptococci. FEMS Microbiol. Rev. 46: 281-295 (1987) https://doi.org/10.1111/j.1574-6968.1987.tb02466.x
  45. Le Loir Y, Gruss A, Ehrlich SD, Langella P. A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J. Bacteriol. 180: 1895-1903 (1998)
  46. van Asseldonk M, de Vos WM, Simon G. Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous ${\alpha}$-amylase. Mol. Gen. Genet. 240: 428-434 (1993) https://doi.org/10.1007/BF00280397
  47. McCracken A, Timms P. Efficiency of transcription from promoter sequence variants in lactobacillus is both strain and context dependent. J. Bacteriol. 181: 6569-6572 (1999)
  48. Araya T, Ishinashi N, Shlmamura S, Tanaka T, Takahashi H. Genetic and molecular analysis of the rpoD gene from Lactococcus lactis. Biosci. Biotech. Bioch. 57: 88-92 (1993) https://doi.org/10.1271/bbb.57.88
  49. Jeong D-W, Choi YC, Lee JM, Kim JH, Lee JH, Kim KH, Lee HJ. Isolation and characterization of promoters from Lactococcus lactis ssp. cremoris LM0230. Food Microbiol. 23: 82-89 (2006) https://doi.org/10.1016/j.fm.2005.01.006
  50. Waterfield NR, LePage PWF, Wilson PW, Wells JM. The isolation of lactococcal promoters and their use in investigating bacterial luciferase synthesis in Lactococcus lactis. Gene 165: 9-15 (1995) https://doi.org/10.1016/0378-1119(95)00484-N
  51. Koivula T, Sibakov M, Palva I. Isolation and characterization of Lactococcus lactis subsp. lactis promoters. Appl. Environ. Microbiol. 57: 333-340 (1991)
  52. Jensen PR, Hammer K. The sequences of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl. Envrion. Microbiol. 63: 82-87 (1998)
  53. Miyoshi A, Jamet E, Commissaire J, Renault P, Langella P, Azevedo V. A xylose-inducible expression system for Lactococcus lactis. FEMS Microbiol. Lett. 239: 205-212 (2004) https://doi.org/10.1016/j.femsle.2004.08.018
  54. Chandrapati S, O'sullivan DJ. Characterization of the promoter regions involved in galactose- and nisin-mediated induction of the nisA gene in Lactococcus lactis ATCC 11454. Mol. Microbiol. 2: 467-477 (2002) https://doi.org/10.1111/j.1365-2958.1988.tb00052.x
  55. Eichenbaum Z, Federle MJ, Marra D, de Vos WM, Kuipers OP, Kleerebezem M, Scott JR. Use of the lactococcal nisA promoter to regulate gene expression in Gram-positive bacteria: comparison of induction level and promoter strength. Appl. Environ. Microbiol. 64: 2763-2769 (1998)
  56. Mierau I, Kleerebezem M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl. Microbiol. Biot. 68: 705-717 (2005) https://doi.org/10.1007/s00253-005-0107-6
  57. de Ruyter PGGA, Kuipers OP, de Vos WM. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl. Environ. Microbiol. 62: 3662-3667 (1996)
  58. O'Sullivan DJ, Walker SA, West SG, Klaenhammer TR. Development of an expression strategy using a lytic phage to trigger explosive plasmid amplification and gene expression. Biotechnology 14: 82-87 (1996) https://doi.org/10.1038/nbt0196-82
  59. Walker SA, Klaenhammer TR. Molecular characterization of phage inducible middle promoter and its transcriptional activator from the lactococcal bacteriophage ${\phi}$31. J. Bacteriol. 180: 921-931 (1998)
  60. Israelsen H, Madsen SM, Vrang A, Hansen EB, Johansen E. Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80. Appl. Environ. Microbiol. 61: 2540-2547 (1995)
  61. Madsen SM, Arnau J, Vrang A, Givskov M, Israelsen H. Molecular characterization of the pH-inducible and growth phase-dependent promoter P170 of Lactococcus lactis. Mol. Microbiol. 32: 75-87 (1999) https://doi.org/10.1046/j.1365-2958.1999.01326.x
  62. Sanders JW, Venema G, Kok J. A chloride-inducible gene expression cassette and its use in induced lysis of Lactococcus lactis. Appl. Environ. Microbiol. 63: 4877-4882 (1997)
  63. Llull D, Poquet I. New expression system tightly controlled by zinc abailability in Lactococcus lactis. Appl. Environ. Microbiol. 70: 5398-5406 (2004) https://doi.org/10.1128/AEM.70.9.5398-5406.2004
  64. Gasson MJ. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic Streptococci after protoplast-induced curing. J. Bacteriol. 154: 1-9 (1983)
  65. von Heijne G. The signal peptide. J. Membrane Biol. 115: 195-201 (1990) https://doi.org/10.1007/BF01868635
  66. Pugsley AP. The complete general secretory pathway in Gamnegative bacteria. Microbiol. Rev. 57: 50-108 (1993)
  67. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol. Mol. Biol. R. 64: 515-547 (2000) https://doi.org/10.1128/MMBR.64.3.515-547.2000
  68. Jeong D-W, Choi YC, Lee JM, Kim JH, Lee JH, Kim KH, Lee HJ. Screening and characterization of secretion signals from Lactococcus lactis ssp. cremoris LM0230. J. Microbiol. Biotech. 14: 1052-1056 (2004)
  69. Perez-Martinez G, Kok J, Venema G, van Dijl J.M, Smith H, Bron S. Protein export elements from Lactococcus lactis. Mol. Gen. Genet. 234: 401-411 (1992) https://doi.org/10.1007/BF00538699
  70. Poquet I, Ehrlich SD, Gruss A. An export-specitic reporter designed for Gram-positive bacteria: application to Lactococcus lactis. J. Bacteriol. 180: 1904-1912 (1998)
  71. Ravn R, Arnau J, Madsen SM, Vrang A, Israelsen H. The development of TnNuc and its use for the isolation of novel secretion signals in Lactococcus lactis. Gene 242: 347-356 (2000) https://doi.org/10.1016/S0378-1119(99)00530-2
  72. Sibakov M, Koivula T, von Wright A, Palva I. Secretion of TEM ${\beta}$-lactamase with signal sequences isolated from the chromosome of Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 57: 341-348 (1991)
  73. Smith H, Bron S, van Ee J, Venema G. Construction and use of signal sequence selection vectors in Escherichia coli and Bacillus subtilis. J. Bacteriol. 169: 3321-3328 (1987) https://doi.org/10.1128/jb.169.7.3321-3328.1987
  74. Puohiniemi R, Simonen M, Muttilainen S, Himanen JP, Sarvas M. Secretion of the Escherichia coli outer membrane proteins OmpA and OmpF in Bacillus subtilis is blocked at an early intracellular step. Mol. Microbiol. 6: 981-990 (1992) https://doi.org/10.1111/j.1365-2958.1992.tb02164.x
  75. Andersson H, von Heijne G. A 30-residue-long 'export initiation domain' adjacent to the signal sequence is critical for protein translocation across the inner membrane of Escherichia coli. P. Natl. Acad. Sci. USA 88: 9751-9754 (1991)
  76. Le Loir Y, Nouaille S, Commissaire J, Bretigny L, Gruss A, Langella P. Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl. Environ. Microbiol. 67: 4119-4127 (2001) https://doi.org/10.1128/AEM.67.9.4119-4127.2001
  77. Boucher I, Parrot M, Gaudreau H, Champagne CP, Vadeboncoeur C, Moineau S. Novel food-grade plasmid vector based on melibiose fermentation for the genetic engineering of Lactococcus lactis. Appl. Envrion. Microbiol. 68: 6152-6161 (2002) https://doi.org/10.1128/AEM.68.12.6152-6161.2002
  78. Bron PA, Benchimol MG, Lambert J, Palumbo E, Deghorain M, Delcour J, de Vos WM, Kleerebezem M, Hols P. Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Appl. Environ. Microbiol. 68: 5663-5670 (2002) https://doi.org/10.1128/AEM.68.11.5663-5670.2002
  79. Dickely F, Nilsson D, Hansen EB, Johansen E. Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol. Microbiol. 15: 839-847 (1995) https://doi.org/10.1111/j.1365-2958.1995.tb02354.x
  80. Froseth BR, Mckay LL. Development and application of pFM011 as a possible food-grade cloning vector. J. Dairy Sci. 74: 1445-1453 (1991) https://doi.org/10.3168/jds.S0022-0302(91)78302-1
  81. Han TU, Jeong D-W, Cho SH, Lee J-H, Chung DK, Lee HJ. Construction of a lactococcal shuttle/expression vector containing a ${\beta}$-galactosidase gene as a screening marker. Korean J. Microbiol. Biotech. 33: 241-247 (2005)
  82. Hughes BF, McKay LL. Deriving phage-insensitive lactococci using a food-grade vector encoding phage and nisin resistance. J. Dairy Sci. 75: 914-923 (1991) https://doi.org/10.3168/jds.S0022-0302(92)77831-X
  83. Jeong D-W, Lee J-H, Kim KH, Lee HJ. A food-grade expression/secretion vector for Lactococcus lactis that uses an ${\alpha}$-galactosidase gene as a selection marker. Food Microbiol. 23: 468-475 (2006) https://doi.org/10.1016/j.fm.2005.06.003
  84. Leenhouts K, Bolhuis A, Venema G, Kok J. Construction of a food-grade multiple-copy integration system for Lactococcus lactis. Appl. Microbiol. Biot. 49: 417-423 (1998) https://doi.org/10.1007/s002530051192
  85. Liu C-Q, Leelawatcharamas V, Harvey ML, Dunn NW. Cloning vectors for lactococci based on plasmid encoding resistance to cadmium. Curr. Microbiol. 33: 35-39 (1996) https://doi.org/10.1007/s002849900070
  86. Platteeuw C, van Alen-Boreeigter I, van Schalkwijk S, de Vos WM. Food-grade cloning expression system for Lactococcus lactis. Appl. Environ. Microbiol. 62: 1008-1013 (1996)
  87. Sorensen KI, Larsen R, Kibenich A, Junge MP, Johansen E. A food-grade cloning system for industrial strains of Lactococcus lactis. Appl. Environ. Microbiol. 66: 1253-1258 (2000) https://doi.org/10.1128/AEM.66.4.1253-1258.2000
  88. Takala TM, Saris PEJ. A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisl. Appl. Microbiol. Biot. 59: 467-471 (2002) https://doi.org/10.1007/s00253-002-1034-4
  89. Liu C-Q. Khunajakr N, Chia LG, Deng Y-M, Charoenchai P, Dunn NW. Genetic analysis of regions involved in replication and cadmium resistance of the plasmid pND302 from Lactococcus lactis. Plasmid 38: 79-90 (1997) https://doi.org/10.1006/plas.1997.1301
  90. Kiewiet R, Kok J, Seegers JFML, Venema G, Bron S. The mode of replication is a major factor in segregational plasmid instability in Lactococcus lactis. Appl. Environ. Microbiol. 59: 358-364 (1993)
  91. Glenting J, Madsen SM, Vrang A. Fomsgaard A, Israelsen H. A plasmid selection system in Lactococcus lactis and its use for gene expression in L. lactis and human kidney fibroblasts. Appl. Environ. Microbiol. 68: 5051-5056 (2002) https://doi.org/10.1128/AEM.68.10.5051-5056.2002
  92. de Vos WM. Safe and sustainable systems for food-grade fermenta-tions by genetically modified lactic acid bacteria. Int. Dairy J. 9: 3-10 (1999) https://doi.org/10.1016/S0958-6946(99)00038-2
  93. Emond E, Lavallee R, Drolet G, Moineau S, LaPointe G. Molecular characterization of a theta replication plasmid and its use for development of a two-component food-grade cloning system for Lactococcus lactis. Appl. Environ. Microbiol. 67: 1700-1709 (2002) https://doi.org/10.1128/AEM.67.4.1700-1709.2001
  94. Henrich B, Klein JR, Weber B, Delorme C, Renault P, Wegmann U. Food-grade delivery system for controlled gene expression in Lactococcus lactis. Appl. Environ. Microbiol. 68: 5429-5436 (2002) https://doi.org/10.1128/AEM.68.11.5429-5436.2002
  95. Simoes-Barbosa A, Abreu H, Silva Neto A. Gruss A. Langella P. A food-grade delivery system for Lactococcus lactis and evaluation of inducible gene expression. Appl. Microbiol. Biot. 65: 61-67 (2004)
  96. Leenhouts K, Kok J, Venema G. Replacement recombination in Lactococcus lactis. J. Bacteriol. 173: 4794-4798 (1991) https://doi.org/10.1128/jb.173.15.4794-4798.1991
  97. Kuipers OP, Beerthuyzen MM, Siezen RJ, de Vos WM. Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Eur. J. Biochem. 216: 281-291 (1993) https://doi.org/10.1111/j.1432-1033.1993.tb18143.x
  98. van Rooijen RJ, Gasson MJ, de Vos WM. Characterization of the promoter of the Lactococcus lactis lactose operon: contribution of flanking sequences and LacR repressor to its activity. J. Bacteriol. 174: 2273-2280 (1992) https://doi.org/10.1128/jb.174.7.2273-2280.1992
  99. Eaton TJ, Shearman CA. Gasson MJ. The use of bacterial luciferase genes as reporter genes in Lactococcus lactis: regulation of the Lactococcus lactis lactose gene. J. Gen. Microbiol. 139: 1495-1501 (1993) https://doi.org/10.1099/00221287-139-7-1495
  100. Payne J, MacCormick CA, Griffin HG, Gasson MJ. Exploitation of a chromosomally integrated lactose operon for controlled gene. FEMS Microbiol. Lett. 136: 19-24 (1996) https://doi.org/10.1111/j.1574-6968.1996.tb08019.x
  101. Steidler L, Wells JM, Raemakers A, Vanderkerckhove J, Fiers W, Remaut E. Secretion of biologically active murine interleukin-2 by Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 61: 1627-1629 (1995)
  102. de Ruyter PGGA, Kupers OP, Beerthuyzen MM, van Alen-Boerrigter IJ, de Vos WM. Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J. Bacteriol. 178: 3434-3439 (1996) https://doi.org/10.1128/jb.178.12.3434-3439.1996
  103. Sanders JW, Leenhouts KJ, Haandrikman AJ, Venema G, Kok J. Stress response in Lactococcus lactis: Cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene. J. Bacterial. 177: 5254-5260 (1995) https://doi.org/10.1128/jb.177.18.5254-5260.1995
  104. Hindre T, Le Pennec J-P, Haras D, Dufour A. Regulation of lantibiotic lacticin 481 production at the transcriptional level by acid pH. FEMS Microbiol. Lett. 231: 291-298 (2004) https://doi.org/10.1016/S0378-1097(04)00010-2
  105. Vos P, Simons G, Siezen RJ, de Vos WM. Primary structure and organization of the gene for a prokaryotic, cell-envelope located serine proteinase. J. Biol. Chem. 264: 13579-13585 (1989)
  106. van der Meer JR, Rollema HS, Siezen RJ, Kuipers OP, de Vos WM. Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Laclococcus lactis. J. Biol. Chem. 269: 3555-3562 (1994)