The Acid Sensitivity of Gulose and Mannose in Chemically-Reduced Alginates Obtained from Pseudomonas syringae

  • Ashby, Richard D. (Audubon Sugar Institute, Louisiana State University Agricultural Experiment Station) ;
  • Day, Donal F. (Audubon Sugar Institute, Louisiana State University Agricultural Experiment Station) ;
  • Kim, Du-Woon (Department of Food and Nutrition, Chonnam National University)
  • Published : 2006.08.30

Abstract

The chemical reduction of Pseudomonas syringae subsp. phaseolicola alginates produces neutral polymers of D-mannose and L-gulose in source specific ratios. L-Gulose was highly sensitive to degradation by 1N HCl at $100^{\circ}C$. As hydrolysis time increased, gulose recovery decreased to 22% after 4 hr, whereas 98% of the D-mannose was recovered under the same conditions. Thin layer chromatography showed the formation of a second product upon L-gulose acid hydrolysis. This new product had a rate of flow (Rf) value of 0.58, identical to that of 1,6 anhydro-${\beta}$-D-mannopyranose and very close to that of 1,6 anhydro-${\beta}$-D-glucopyranose (Rf=0.60). Because of the difference in acid sensitivity between L-gulose and D-mannose, normal acid hydrolytic techniques applied to reduced alginates produces erroneous mannuronic acid (M): guluronic acid (G) ratio's unless one accounts for the differential rates of destruction of each sugar.

Keywords

References

  1. Baekkevig KH, Sletta M, Gimmestad R, Aune H, Ertesvag K, Degnes BE, Christensen TE, Ellingsen SV. Role of the Pseudomonas fluorescens alginate lyase (AlgL) in clearing the periplasm of alginates not exported to the extracellular enviroment. J. Bacteriol. 187: 8375-8384 (2005) https://doi.org/10.1128/JB.187.24.8375-8384.2005
  2. Davidson JW, Sutherland IW, Lawson CI. An alginate lysate from Azotobacter vinelandii phage. J. Gen. Microbiol. 98: 603-606 (1977) https://doi.org/10.1099/00221287-98-2-603
  3. Dworkin M, Foster W. Experiments with some microorganisms which utilize ethane and hydrogen J. Bacteriol. 75: 592-603 (1958)
  4. Fett WF, Osman SF, Fishman ML, Siebles TS. Alginate production by plant-pathogenic Pseudomonas. Appl. Environ. Microbiol. 52: 466-473 (1986)
  5. Franklin MJ, Ohman DE. Mutant analysis and cellular localization of the AlgI, AlgJ, and AlgF proteins required for O acetylation of alginate in Pseudomonas aeruginosa. J. Bacteriol. 184: 3000-3007 (2002) https://doi.org/10.1128/JB.184.11.3000-3007.2002
  6. Gorin PAT, Spencer JFT. Exocellular alginic acid from Azotobacter vinelandii. Can. J. Chem. 44: 993-998 (1966) https://doi.org/10.1139/v66-147
  7. Ilic IJ, Jeremic K, Jovanovic S. Kinetics of pullulan depolymerization in hydrochloric acid. Eur. Polym. J. 27: 1227-1229 (1991) https://doi.org/10.1016/0014-3057(91)90059-W
  8. Kim EJ, Kim BY, Rhim JW. Enhancement of the water-resistance and physical properties of sodium alginate film. Food Sci. Biotechnol. 14: 108-111 (2005)
  9. Knutson CA, Jeanes A. Determination of the composition of uronic acid mixtures. Anal. Biochem. 24: 482-490 (1968) https://doi.org/10.1016/0003-2697(68)90155-3
  10. Miller JA. The stereochemistry of cyclic derivatives of carbohydrates. Adv. Carbohyd. Chem. 10: 1-53 (1955) https://doi.org/10.1016/S0096-5332(08)60389-6
  11. Osman SF, Fett WF, Fishman ML. Exopolysaccharides of the phytopathogen Pseudomonas syringae pv. Glycinea. J. Bacteriol. 166: 66-71 (1986) https://doi.org/10.1128/jb.166.1.66-71.1986
  12. Pena C. Miranda L, Segura D, Nunez C, Espin G, Galindo E. Alginate production by Azotobacter vinelandii mutants altered in poly-${\beta}$-hydroxybutyrate and alginate biosynthesis. J. Ind. Microbiol. Biot. 29: 209-213 (2005) https://doi.org/10.1038/sj.jim.7000310
  13. Penner MH, Hashimoto AG, Esteghlalian A, Fenske JJ. Acid-catalyzed hydrolysis of lignocellulosic materials. ACS Sym. Ser. 647: 11-31 (1996)
  14. Prasanna V, Prabha TN, Tharanathan RN. Pectic polysaccharides of mango: structural studies. J. Sci. Food Agric. 84: 1731-1735 (2004) https://doi.org/10.1002/jsfa.1874
  15. Reeves RE. Chemistry of the carbohydrates. Ann. Rev. Biochem. 27: 15-34 (1958) https://doi.org/10.1146/annurev.bi.27.070158.000311
  16. Rehm BHA, Valla S. Bacterial alginates: biosynthesis and applications. Appl. Microbiol. Biot. 48: 281-288 (1997) https://doi.org/10.1007/s002530051051
  17. Rhim JW, Lee, JH. Effect of $CaCl_{2}$ treatment on mechanical and moisture barrier properties of sodium alginate and soy protein-based films. Food Sci. Biotechnol. 13: 728-732 (2004)
  18. Skjak-Braek G, Grasdalem H, Larsen L. Monomer sequence and acetylation pattern in some bacterial alginates. Carbohyd. Res. 154: 239-250 (1986) https://doi.org/10.1016/S0008-6215(00)90036-3
  19. Synnove H, Qiujin Z, Wenche IS, Gudmund SB. Characterization of the hydrolysis mechanism of polyalternating alginate in weak acid and assignment of the resulting MG-oligosaccharides by NMR spectroscopy and ESI-mass specfrometry. Biomacromolecules 7: 2108-2121 (2006) https://doi.org/10.1021/bm050984q
  20. Taylor RI, Shively JE, Conrad HE. Stoichiometric reduction of uronic acid carboxyl groups in polysaccharides. Method Carbohyd. Chem. 7: 148-151 (1976)
  21. Yamasaki M, Ogura K, Mikami W, Murata K. A structural basis for depolymerization of alginate by polysaccharide lyase family-7. J. Mol. Biol. 352: 11-21 (2005) https://doi.org/10.1016/j.jmb.2005.06.075
  22. Zeller SG, Gray GR. Analysis of macrocytis pyrifera and Pseudomonas aeruginosa alginic acids by the reductive-cleavage method. Carbohyd. Res. 226: 313-326 (1992) https://doi.org/10.1016/0008-6215(92)84079-8