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Abstract Modeling the growth kinetics of lactic acid bacteria (LAB), one of the most valuable microbial groups in the food
industry, has been actively pursued in order to understand, control, and optimize the relevant fermentation processes. Most
modeling approaches have focused on the development of single population models. Primary single population models
provide fundamental kinetic information on the proliferation of a primary LAB species, the effects of biological factors on cell
inhibition, and the metabolic reactions associated with cell growth. Secondary single population models can evaluate the
dependence of primary model parameters, such as the maximum specific growth rate of LAB, on the initial external
environmental conditions. This review elucidates some of the most important single population models that are conveniently
applicable to the LAB fermentation analyses. Also, a well-defined mixed population model is presented as a valuable tool for

assessing potential microbial interactions during fermentation with multiple LAB species.
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Introduction

Lactic acid bacteria (LAB), the primary microbial group of
commercial starter cultures, have long played a central role
in the production of cheese, yoghurt, and wines, as well as
many other traditional food products prepared through the
fermentation of meats, sausage, fish, cereals, and vegetables.
LAB can acidify raw materials rapidly through the
transformation of fermentable sugars into organic acids,
mainly lactic acid (1). LAB can biosynthesize many
interesting and important functional metabolites including
natural antimicrobials (1), aromatic compounds (2),
exopolysaccharides (3, 4), low-calorie polyols (5), and
oligosaccharides (4). In addition, LAB can reduce the
toxic or antinutritive factors that naturally exist in foods,
such as lactose, galactose, raffinose, stachyose, verbascose,
protease inhibitors, phytic acid, tannins, cyanogenic
glucosides, and biogenic amines (1). These beneficial
characteristics of LAB provide fermented food products
with enhanced microbial safety, longer shelf-life, improved
texture, higher sensorial quality, and more health-
promoting substances.

Mathematical models have been used extensively to
generate better understanding and control of the complex
fermentation processes associated with LAB. When
developing models, most studies have focused on single
population models, obtained from modeling the growth
kinetics of a single LAB species. Single population models
may be categorized into two groups: primary models and
secondary models (6). Primary models are generally built
to describe cell proliferation under given environmental
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conditions. Although a large variety of growth models
have been proposed in predictive microbiology, only a few
of them have been tested for LAB fermentations.
Biokinetic models for metabolic reactions coupled with
cell proliferation, which include substrate utilization and
the generation of functional metabolites, are also classified
as primary models. Secondary models are constructed to
assess the effects of relevant environmental factors (e.g.,
temperature, pH, ionic strength, ethanol, organic acids) on
primary model parameters, generally maximum specific
growth rate (W.). The criteria that must be considered
when developing models were proposed by Rosso et al.
(7) as follows: simplicity (minimum number of parameters),
convenient applicability, good quality of fit with experi-
mental data, biological significance of parameters, and
easy estimation of initial parameters.

An important factor that has not been included in single
population models is the influence of background microflora
and associated microbial interactions, namely interspecies
interactions (8). Interspecies interactions cannot be neglected
either in the case of food fermentation, in which a
considerable number of mixed microbial species are often
involved, or in the case of biological preservation, in
which competitive microbial growth is a major concern
(8). Such interactions may primarily cause two typical
phenomena that are observed during LAB fermentation:
the disappearance of certain strains in original starter
cultures (1) and the dominance of secondary flora,
conferring unique flavor characteristics to the final
products, particularly during the maturation step (9). As a
result, mixed population models, in which the effects of
interspecies interactions on microbial growth are taken
into account (10), may therefore have to be adopted for a
better analysis of LAB fermentations.
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This review is organized as follows: First, single
population models, including those that have already been
tested for LAB fermentations, as well as those that are
alleged to be useful in predictive microbiology but have
not yet been tested for the fermentations, are elucidated
systematically, and a generalized form of the growth
kinetic model is presented. Then, a simple underlying
mixed population model developed in predictive micro-
biology and ecology is briefly presented as a convenient
tool for assessing interspecies interactions during LAB
fermentations.

Single population models

Primary meodels for cell proliferation The simplest
realistic approach to modeling microbial proliferation in
batch monoculture with time is to use the first order
growth kinetic model.

dN _
MY (1)

where, N is the concentration of a microbial population at
time ¢ and p is the specific growth rate of the population.

Table 1. Logistic-type microbial growth models
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When microbial cells are introduced to a new
environment, the specific growth rate should increase in
monotone as the cells adjust to the new external conditions
until the maximal value (pnay) is reached at the end of the
lag phase, and should subsequently decrease as the
inhibitory factors to cell growth accumulate in the
environment until the growth rate ultimately drops to zero
at the end of the exponential phase. Taking both the cell
adjustment and inhibition into account, Baranyi and
Roberts (11) reformed Eq. 1 as follows:

D N @)

where, £, is an adjustment (or adaptation) function and f; is
an inhibition function. The values of both functions range
between 0 and 1. If neither the cell adjustment nor the cell
inhibition is considered (fy = fi= 1), Eq. 2 reduces to the

well-known Malthus’ Law: "% — 4 N. If cell inhibition
is

expressed as a function of cell concentration (N) only, Eq. 2
becomes one of the logistic-type growth models (Table 1).

Model Eq. no. Reference
dN N 7
Richards G 7|V o) (12)
Logistic (Verhulst-Pear!) Zg—;’ ~ M 1 - = v ) (12)
N,
Hyper-Gompertz %;—;’ = pmax[m( r]r:,ax)] N (5) (12)
=1 Ordinary Gompertz %} = umax[ln( ‘“a"ﬂN 6) (12)
A
) o log]v =
Modified logistic 0 {1 ¢ exp [4 u;Inax (liag 0 +2i|} 0] (13)
Modified Gompertz 1og§ = Aexp{gexp[umjxe(tlag—t) + 1}} (8) (13)
0
aN _ .
. dt “maX[l +q}[l ijN
Baranyi and Roberts ® (n
dq _
fA 7&1 dt = Hmax9q
N o
Fujikawa I | 1221 T (10) (14)

A= lOg(Nmax/NO);
n = an adjustment factor (=20);
N, = initial cell concentration;

Npmax = maximum cell concentration at stationary phase or carrying capacity of environment;

Nmin = minimum cell concentration, which is a bit smaller than No;

q = a dimensionless variable characterizing the physiological state of cells;

tiag = lag time; )
Mmax = Maximum specific growth rate.
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When cell adjustment is not considered (fy = 1), the
familiar Richards, logistic, and Gompertz-type models
(Eq. 3 to 6) are obtained. The Richards (Eq. 3) and logistic
(Eq. 4) models have been used most frequently for the
analysis of LAB fermentation (6, 15-22). One of the
drawbacks of these models is that they cannot describe the
lag phase on a semi-logarithmic plot, in which the
transition between lag and exponential phases is generally
observed for microbial proliferation. To overcome this
shortcoming, the analytical solutions of the logistic (Eq. 4)
and ordinary Gompertz (Eq. 6) models were modified by
introducing a lag factor (13). The modified Gompertz
function (Eq. 8) is one of the most popular growth kinetic
models in predictive microbiology. However, the model
has rarely been used for LAB fermentation, probably
because previous studies on LAB fermentation have been
carried out under conditions designed to minimize the lag
phase. The lag-related problem was also solved in a more
sophisticated way by taking into account the adaptation of
cells during the lag phase (f4 # 1). Baranyi and Roberts
(11) proposed an adjustment function based on Michaelis-
Menten kinetics [fs = gq/(1+q) in Eq. 9], where q is a
dimensionless variable characterizing the physiological
state of cells during the lag phase. The value of q is

supposed to be proportional to the per cell concentration of -

a critical substance that is the bottle-neck in the process of
cell growth. For this biological explanation of lag phase,
the f, of Baranyi and Roberts may be regarded as semi-
mechanistic (23). Fujikawa et al. (14) developed a purely
empirical adjustment function depending on cell
concentration [fy = (1-N/N)" in Eq. 10]. The authors
showed that the model of Baranyi and Roberts (Eq. 9) and
their new model (Eq. 10) yielded more accurate
estimations Of Mmax, tie and Nms than the modified
Gompertz model (Eq. 8), which overestimated values for
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the %rowth of Escherichia coli at various levels of Ny (10
- 10° CFU/mL) and temperature (27.6 - 36.0°C). However,
these two advanced models (Eq. 9 and 10) have not yet
been tested for LAB fermentation.

Although the N-dependent inhibition functions, which
force the specific growth rate in Eq. 1 to decrease mono-
tonically during exponential growth, enable the logistic-
type growth models to describe the transition from
exponential to stationary phases quantitatively, the biological
factors involved in cell inhibition are not explicitly
represented in the functions. In the case of LAB, such
inhibitory factors include depletion of essential nutrients
(e.g., fermentable sugars, amino acids), production of
inhibitors (e.g., organic acids, bacteriocins), and acidifica-
tion of the environment (pH decrease) (6). Leroy and De
Vuyst (24) proposed an inhibition function, in which the
cell inhibition caused by the depletion of glucose (S), the
production of undissociated lactic acid (HL), and the
exhaustion of some essential nutrients in the complex
nutrient source (CNS) (i.e., bacteriological peptone, Lab-
Lemco powder, and yeast extract) of MRS (de Man-
Rogosa-Sharpe) broth is reflected, for modeling the
growth of Lactobacillus sakei CTC 494, a bacteriocin-
producing starter for sausage fermentation. Assuming that
no interaction effects occur between the three individual
inhibitory actions, the inhibition function (f;) was expressed
as follows:

Ji = fsfufons (11)

where, f, fir, and fons are the individual inhibition
functions for glucose depletion, undissociated lactic acid
production, and complex nutrient exhaustion, respectively,
and range between 0 and 1. The structures of the
individual functions are shown in Table 2. For the function

Table 2. Individual inhibition functions used as components of inhibition function (f;) for the analysis of lactic acid bacteria

fermentation
Inhibition factor Associated chemical Individual inhibition function Eq.no.  Reference
S
Sugar fo = =—— (12) (24)
8 5 K¢+S
Nutrient depletion 1 if N<N,
Compexouint s S
1—a;(Ny,—N;)—a,(N-Ny) if N>N,
Pr. o . . _ HA4 "
oduct inhibition Organic acids fua = [1 7 } 14 24
1 . H-pH_. H-pH,
Acidification Proton - @I PHyin) OH P ) (15) 2]

 pH-pHop)(pH - pHp) — (pH—pH,)

ay, a, = slopes on the plot of fns vs. N when Nj <N <N, and N >'N,, respectively;

HA = concentration of an undissociated organic acid,;

HA = concentration of an undissociated organic acid, above which growth ceases;
K = limiting substrate concentration at which the specific growth rate is half its maximum value; o
Nj, N, = critical cell concentrations at which the nutrient inhibition pattern changes from non-inhibition to the first inhibition phases, and from the

first inhibition to the second inhibition phases, respectively;
PHmax = the highest pH value that allows cell growth;
PHpin = the lowest pH value that allows cell growth;
IS)HH = pH value at which p is maximum;

= concentration of a fermentable sugar.
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of f;, Monod’s equation (Eq. 12) was used. For the
function of fiy, Eq. 14, which was proposed as a
secondary model by Passos ef al. (25), was adopted. This
function is able to relate the concentration of HL to the
cell inhibition caused by the presence of HL molecules as
they cross the cell membrane and cause a drop in the
intracellular pH (23). The inhibitory action of HL is also
associated with the decrease in the pH of the medium due
to the accumulation of HL and the consequent protonation
of lactate (L) and other dissociated organic acids (A’)
present in the medium (23, 24). These additional inhibitory
effects of HL were minimized by maintaining a constant
pH in the medium during the experiments, but were
further considered in the authors’ subsequent work (24), in
which the individual inhibition functions for acetic and
citric acids based on Eq. 14 and the inhibition function for
decreases in the medium pH (Eq. 15) were incorporated
into Eq. 11 as well. The concentration of undissociated
organic acids (HA) was estimated using the following
Henderson-Hasselbalch equation.

+

H'L
H+K,

(16)

where, H" is the concentration of protons, L is the total
concentration of lactic acid (= HA + A"), and K, is the
dissociation constant of organic acids (107% M for lactic
acid). For the function of fcys, a three-step equation (Eq.
13) was proposed. This N-dependent function divides
growth inhibition into three phases, a non-inhibition phase
(foxs = 1) and two subsequent inhibition phases. The
function was able to describe a strong reduction in the
growth rate of L. sakei CTC 494 during fermentation,
which could not be sufficiently explained by inhibition due
to glucose depletion and HL production. However, the
assumption of a discontinuous inhibition pattern on the
basis of a sudden shortage of essential nutrients seems to
be awkward, because the behavior of the microbial
population as a whole is expected to change smoothly
(23). Leroy and De Vuyst (24, 26) successfully employed
Eq. 11 as an inhibition function for modeling the growth
of L. sakei, although they did not consider the cell
adaptation (f, = 1). Care should be taken when applying
Eq. 11 to other microbes and fermentation processes,
because possible correlation between the individual
inhibitory actions may seriously interfere with the
modeling.

Primary models for metabolic reactions Modeling the
metabolic reactions occurring during cell proliferation,
including sugar utilization, lactic acid generation, and
bacteriocin production, is also crucial to understanding and
controlling LAB fermentation processes (Table 3). The
consumption of fermentable sugars by LAB has been
successfully described by the well-known Pirt’s model
(Eq. 17), in which the cell yield factor (Yyss), an overall
stoichiometric coefficient equal to the total cell mass (or
cells) produced divided by the total mass of sugar
consumed, and the specific maintenance rate for the sugar
(mg) are included (6, 15-19, 21, 24, 26, 27). The
generation of lactic acid by LAB can be estimated from
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the sugar consumption with the yield factor for the
conversion of sugar into lactic acid (Yy) using Eq. 18 (6,
15-19, 21, 22, 24, 26, 27). The value of Y} is often not
significantly influenced by environmental conditions such
as temperature, pH, and salt, and is close to 1.0 g-lactic
acid/g-glucose for homofermentative LAB such as L. sakei
and L. curvatus, which convert all glucose into lactic acid
(16, 17, 22, 24, 26). Equation 19, obtained by combining
Eq. 17 and 18, can be also used to predict the rate of lactic
acid generation (27). The production of bacteriocin by
LAB can be predicted by using Eq. 20, which describes
the rate of change in bacteriocin activity in the medium (6,
18, 22, 24, 26). Equation 20 denotes that the production of
bacteriocin increases with cell yield, ceases when the
stationary growth phase is reached, and then decreases
mainly due to the adsorption of bacteriocin molecules to
the cells (22).

Secondary models A number of secondary models,
most of which are purely empirical, have been developed
to assess the dependency of py. of LAB on environ-
mental factors, such as temperature, pH, organic acids,
ethanol, and ionic strength. A simple but effective way of
secondary modeling is to use the following two
assumptions: (1) pmax is influenced by the initial
conditions of inhibitory environmental factors, and (2) the
inhibitory actions of individual inhibitory factors are
independent (25, 26). The first assumption can be
represented by:

@D

where, (HUmax)opt is the optimal maximum specific growth

Hmax= (:umax)opty0

Table 3. Models for metabolic reactions coupled with cell
proliferation

Metabolic reaction ~ Model Eq. no. Reference
TR ds 1 dN
== 2 uN 17 15
Sugar utilization = ¥ odr Mg (17) (15)
dL _ ., dS
o =y ag (s
Lactic acid
generation »
dL 1 dN
== Dy (19) @27
dt Yy, dt Ot
Bacteriocin dB dN .
. g A g > 2 24
production ar ke dr kBN if N2Np (20) 24)

B = bacteriocin activity in cell medium; ) i
kg = specific bacteriocin production (or yield coefficient for bacterio-
cin on the cells produced); o

k; = apparent rate of bacteriocin inactivation; ) ]
m, = specific maintenance rate (or maintenance coefficient) for lactic
acid (= mgYyg); . .

myg = specific maintenance rate (or maintenance coefficient) for sugar;
Np = minimum cell concentration for bacteriocin production, below
which the value of kg is equal to zero; ) o
Y5 = yield coefficient for the conversion of sugar into lactic acid (=
AL .

Yy = S/ield coefficient for cells on the lactic acid produced (= AN/

AL);
Ywis = yield coefficient for cells on the sugar consumed (= AN/AS).
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rate obtained under optimal environmental conditions in
the absence of inhibitory factors, and 7y, is the function
denoting the initial inhibition due to suboptimal initial
environmental conditions (0 < y, < 1). According to the
second assumption, we may write:
Yo~ V1Y prYHAYEN IS 22)
where, Y1, Ypu, YHa, Yeo and vyis refer to the individual initial
inhibition functions for temperature, pH, organic acids,
ethanol, and ionic strength, respectively. If there are other
initial inhibitory factors, the functions for those factors can
be also added into Eq. 22 to the extent that their
independencies are ensured. Some individual initial

D. Chung et al.

inhibition functions successfully used in the analysis of
LAB are presented in Table 4. The functions of Eq. 23, 24,
25, and 32 generate parabolic curves with a maximum
value equal to unity at optimal initial levels of inhibitory
factors (0 <v; < 1). The functions of Eq. 26, 27, 29, and 30
decrease from one towards zero (0 <y;< 1) as the levels of
initial inhibitory factors increase from zero to ‘their
maximum values for cell growth. The functions of Eq. 28
and 31 describe the growth-stimulating effects of some
inhibitory factors such as acetic acid and ionic strength
(25, 29, 30). The functions are unity in the absence of
inhibitors (optimum conditions) and increase positively
with the levels of initial inhibitory factors. When the levels
exceed certain values, the functions begin to decrease and

Table 4. Individual initial inhibition functions for secondary modeling

Inhibitory factor Individual initial inhibition function Eq. no. Reference
2
(T - T ) (T - Ti)
= max: min. 23 7
T (Topt*Tmin)[(Topt_Tmin)(T_Topt)_(Topt_Tmax)(Topt+Tmin_ZT)] ( ) ( )
Temperature
v = (5] T 7 @4 @8)
H-pH_. H-pH
- (pH-pH ;i )(pH - pH ;) . (25) %)
(pH_pHmin)(pH_pHmax) - (pH—pHopt)
pH (or HY) -
_ H
Ty = [1 s } 6) (25, 29)
HA 77
=11 2
Ve = 1] @) (2529
Organic acids
B by HA HA4
e~ [ e [ A ] @) @529
Ethanol . [1 - Ef’ } 29) 28)
max:
_ IS 7
vis = [1-7 Smaj (30) (28)
. b, IS n
Ionic strength Vg = [1 + Ifm}[l _IS{S } (3D 29
max:
- ISUS-1S,,,.) 32 28)
B ISUS 18,000~ US— 1S,

bua, bis = stimulation coefficients for organic acids and ionic strength, respectively;

¢, p = adjustment factors;

Et = initial percent of ethanol at which the fermentation begins;
Etynax = initial percent of ethanol above which growth ceases;

Hp:nax = initial concentration of protons above which growth ceases;
IS = initial ionic strength at which the fermentation begins;

ISiax = initial ionic strength above which growth ceases;

IS, = initial ionic strength at which M,,,,, 1s optimal;

Kiia, Kis = inhibition coefficients for organic acids and ionic strength, respectively;

pHoy = initial pH at which M,,,, is optimal;

T = initial temperature at which the fermentation begins;
Tmax = initial temperature above which growth ceases;
Tnin = initial temperature below which growth ceases;
Tt = initial temperature at which M, is optimal.
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reach zero at the maximum levels of inhibitory factors for
cell growth. By substituting Eq. 21 into Eq. 2, a general
form of the single population microbial growth kinetic
model can be expressed as follows:

dN
E = (ﬂmax)opty(]f A/‘}N (3 3 )

Mixed population models

Several mathematical approaches have been proposed in
predictive microbiology to analyze the microbial interac-
tions among different species (10, 31-39). In this paper, the
modified Lotka-Volterra model developed by Dens ef al.
(31) for two-species competition for a limited amount of
resources in homogeneous food products is presented as a
useful example of a mixed population model, because it
has been mathematically well studied so that it could be
applied to the analysis of LAB communities in a
convenient and sophisticated manner. The basic Lotka-
Volterra model for two interacting species, which is an
extension of the logistic model (Eq. 4), can be written as

follows:
dN, N+apN,
7 =ﬂmax1|:1 —N——— 1

max]
dN, Ny,+ o N,
7 = Hmax) \ _N— 2
max2

where, N; is the concentration of species i, L. 1S the
maximum specific growth rate of species 7, Npaq is the
maximum concentration of species i (or carrying capacity
of the environment for species /) in the absence of other
species, and ay; is a coefficient of interaction representing
the effects of species j on the growth of species i. The
interaction can be categorized into four classes depending
on the value of oy (40): (1) mutualistic interaction when
04 < 0, (2) commensal interaction when o, < 0 and o =
0 or when o, = 0 and oy < 0, (3) parasitic interaction
when o> < 0 and a,; > 0 or when a1, > 0 and o; <0, and
(4) competitive interaction when oy;> 0. In the case of no
interaction (oy; = 0), Eq. 34 reduces to the logistic growth
model (Eq. 4) for each single species. The basic Lotka-
Volterra model was expanded by Dens ef al. (31) into the
following form using the model of Baranyi and Roberts

(Eq. 9) to account for the influence of lag phase on the
interaction.

@zﬂ 0 7 | Mo,
dt ‘max 1 1+q1 Nmaxl 1

dN, 0 ]| e (35)
dt Hmax2 1+q2 N 2

max2

(34)

where, q; is a dimensionless variable characterizing the
physiological state of species i (dq/dt = pPpaaq;)- 1f no
interaction occurs (o; = 0), Eq. 35 reduces to the model of
Baranyi and Roberts (Eq. 9) for each single species. For a
very large value of g;, the equation reduces to Eq. 34.
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Liu et al (10) investigated the interactions of six
naturally occurring spoilage microorganisms during the
storage of sliced pork shoulder at 5°C by comparing the
values of oy estimated for each pair of the micro-
organisms; the microorganisms included LAB, coliforms,
Pseudomonads, Brochothrix thermosphacta, Salmonella,
and yeasts. The comparison showed that LAB and yeasts
had high antagonistic activity against the other four
microorganisms and that yeasts were highly antagonistic
against LAB. This approach clearly depicted a simple and
explicit way of assessing microbial interactions. However,
the following two important issues were not sufficiently
discussed by the authors: First, the values of P and
N reported in Liu ef al. (10) were obtained not under
monospecific growth conditions, but under natural mixed
growth conditions using the modified Gompertz function
(Eq. 8). Second, the estimated a; values may not be the
intrinsic values of the corresponding microbial pairs in the
given conditions, because of the presence of other
microorganismes.

One major advantage of using the modified Lotka-
Volterra model (Eq. 35) is that this model system can be
easily characterized by the well-known phase plane
method without actually solving the system numerically.
The phase plane method enables one to investigate how
the populations of two interacting species in a given
environment become stabilized and change around the
steady-state points. For Eq. 35, four steady-state points can
be obtained by setting dNy/dt equal to zero (31);

(i) trivial steady-state point, (N;, Nae) = (0, 0),
(ii) N, extinction point, (Nie, Nac) = (Nmaxi, 0),
(iil) N; extinction point, (Nie, Nae) = (0, Nipax2),
(iv) coexistence point, (Nie, Nze)

— (Nmaxl _alszaXZ NmaxZ_OQINmaxl)
1oy, 1-ayy0,

According to the phase plane method, the local stability
properties of each steady-state point in the N;N-plane can
be determined by linearizing Eq. 35, which is a set of two
first-order nonlinear non-autonomous (time-dependent)
differential equations, followed by computing the
eigenvalues of the Jacobian matrix at each steady-state
point. The mathematics associated with the method is
presented in detail elsewhere (31). The results of this
stability analysis are summarized in Table 5. The trivial
steady-state point behaves as an unstable node in the
N;N,-plane, at which all the solution curves of Eq. 35 are
in outward direction. The N; and N, extinction points can
be either stable nodes, to which the solution paths
converge, or unstable saddle points, which the solution
curves bypass, depending on the sign of (Nmax1 — %12Nmax2)
and (Npaxo — 01 Npay ), respectively. The coexistence point
can also be either a stable node or an unstable saddle point
according to the conditions specified in Table 5. This
coexistent point does not exist if the values of (N —
015N ax2) and (Niax2 — 021 Nmax1) have opposite signs.

Conclusions

Mathematical models applicable to the analysis of LAB
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Table 5. Stability properties of four steady-state points in N,N,-plane for the modified Lotka-Volterra model

Steady-state point (Nye, Noe) Conditions Stability property
(1) Trivial steady-state point Always Unstable node
(0, 0) Y
(2) N, extinction point Ninaxz = %21 Npax1 > 9 Unstable saddle point
(Nunx1, 0) Ninaxs — %01 Npagy <0 Stable and attractive node
(3) N, extinction point Niaxt = ¢12Npay2 > 0 Unstable saddle point
(0; Nuva2) Naxt — %12 Npay2 <0 Stable and attractive node

1~ap0y,>0

N
N

max1

max2 "~

(4) Coexistence point

[Nmaxl — 0(12Nmax2 Nmax2 — (XZINmax 1)
I—ap0y L-op0m

N
N

max]1

max2

—apN

- aIZNmaXZ >0

1 -ap0,,<0

max.

Stable and attractive node

a2leax1 >0

2<0 Unstable saddle point

U“Zleaxl <0

fermentations have been developed mostly on the basis of
single population growth. A generalized form of the single
population growth kinetic model can be expressed as Eq.
33. Logistic-type deterministic models have been used
extensively to describe the proliferation of a single LAB
species during fermentation. Among those models, the
model of Baranyi and Roberts (Eq. 9) or Fujikawa’s model
(Eq. 10), in which an adaptation function is incorporated,
has been known to be very accurate; however, they have
not been applied to the analysis of LAB fermentations yet.
To understand the influence of nutrient depletion, inhibitor
production, and medium acidification on the cell inhibition
during the course of fermentation, a combined-type inhibi-
tion function (Eq. 11) can be used instead of the N-
dependent inhibition functions of the logistic-type growth
models. The metabolic reactions that occur during the
fermentation, such as sugar utilization, lactic acid generation,
and bacteriocin production, can also be simply described.
The influence of the initial levels of environmental factors,
such as temperature, pH, organic acids, ethanol, and ionic
strength, on the maximum specific growth rate of LAB
has been successfully assessed with a combined-type
initial inhibition function (Eq. 22). Potential microbial
interactions must be carefully considered when multiple
LAB species are involved during the fermentation. The
modified Lotka-Volterra model (Eq. 35), a mathematically
well developed mixed population growth kinetic model,
could achieve such a goal in a simple and refined manner.
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