Isolation and Characterization of an Immunopotentiating Factor from Lactobacillus plantarum in Kimchi: Assessment of Immunostimulatory Activities

  • Lee, Jong-Hwa (School of Bioresource Science, Andong National University) ;
  • Kweon, Dae-Hyuk (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Lee, Seung-Cheol (Division of Food Science and Biotechnology, Kyungnam University)
  • Published : 2006.12.31

Abstract

The immunostimulatory activities of Lactobacillus plantarum, the major microorganism in kimchi fermentations were investigated. Five strains of L. plantarum exhibited weak immunopotentiating activity, but L. plantarum PS-21 showed as strong a mitogenic activity as Bifidobacterium adolescentis M101-4, a known positive strain. It is of interest that, L. plantarum PS-21 stimulated proliferation of Peyer's patch cells, one of the most important tissues in the gut-associated lymphoreticular system. Cell' wall fractions from L. plantarum PS-21 also showed strong mitogenic activity compared with the soluble cytoplasmic fraction. A peptidoglycan fraction (PG) extracted from the cell wall of L. plantarum PS-21 was identified as an active mitogenic component when used in murine lymph node and spleen cell test systems. PG showed dose-dependent mitogenic activity and significantly enhanced antibody production in lymph node cells when studied in vitro. The lysosomal enzyme activity of murine peritoneal macrophages was increased when analyzed following injection of PG to the host animal. Furthermore, PG enhanced the production of cytokines such ($TNF-{\alpha}$ and IL-6) in the in vitro culture of RAW 264.7 macrophage cells.

Keywords

References

  1. Vitini E, Alvarez S, Medina M, Medici M, Budeguer MV, Perdigon G. Gut mucosal immunostimulation by lactic acid bacteria. Biocell 24: 223-232 (2000)
  2. Perdigon G, Vintini E, Alvarez S, Medina M, Medici M. Study of the possible mechanisms involved in the mucosal immune system activation by lactic acid bacteria. J. Dairy Sci. 82: 1108-1114 (1999) https://doi.org/10.3168/jds.S0022-0302(99)75333-6
  3. Perdigon G, Alvarez S, Holgado AAPR. Immunoadjuvant activity of oral Lactobacillus casei: influence of dose on the secretory immune response and protective capacity in intestinal infections. J. Dairy Res. 58: 485-496 (1991) https://doi.org/10.1017/S0022029900030090
  4. Kato I, Endo K, Yokokura T. Effects of oral administration of Lactobacillus casei on antitumor responses induced by tumor resection in mice. Int. J. Immunopharmacol. 16: 29-36 (1994) https://doi.org/10.1016/0192-0561(94)90116-3
  5. Tejada-Simon MY, Lee JH, Ustunol Z, Pestka JJ. Ingestion of yogurt containing Lactobacillus acidophilus and Bifidobacterium to potentiate immunoglobulin Aresponses to cholera toxin in mice. J. Dairy Sci. 82: 649-660 (1999) https://doi.org/10.3168/jds.S0022-0302(99)75281-1
  6. Saito H, Watanabe T, Horikawa Y. Effects of Lactobacillus casei on Pseudomonas aeruginosa infection in normal and dexamethasonetreated mice. Microbiol. Immunol. 30: 249-259 (1986) https://doi.org/10.1111/j.1348-0421.1986.tb00940.x
  7. Mitsuoka T. Bifidobacteria and their role in human health. J. Ind. Microbiol. 6: 263-268 (1990) https://doi.org/10.1007/BF01575871
  8. Kadooka Y, Fujiwara S, Hirota T. Effect of bifidobacteria cells on mitogenic response of splenocytes and several functions of phagocytes. Milchwissenschaft 46: 626-630 (1991)
  9. Sekine K, Watanabe-Sekine E, Toida T, Kawashima T, Kataoka, Hashimoto Y. Adjuvant activity of the cell wall of Bifidobacterium infantis for in vivo immune responses in mice. Immunopharm. Immunot. 16: 589-609 (1994) https://doi.org/10.3109/08923979409019741
  10. Sekine K, Ohta J, Onishi M, Tatsuki T, Shimokawa Y, Toida T, Kawashima T, Hashimoto Y. Analysis of antitumor properties of effector cells stimulated with a cell wall preparation (WPG) of Bifidobacterium infantis, Biol. Pharm. Bull. 18: 148-153 (1995) https://doi.org/10.1248/bpb.18.148
  11. Takahashi T, Oka T, Iwana H, Kuwata, Yamamoto Y. Immune response of mice to oral administered lactic acid bacteria. Biosci. Biotech. Bioch. 57: 1557-1560 (1993) https://doi.org/10.1271/bbb.57.1557
  12. Yasui H, Ohwaki M. Enhancement of immune response in Peyer's patch cells cultured with Bifidobacterium breve. J. Dairy Sci. 74: 1187-1195 (1991) https://doi.org/10.3168/jds.S0022-0302(91)78272-6
  13. Lee J, Ametan A, Enomoto A, Sato Y, Motoshima H, Ike F, Kaminogawa S. Screening for the immunopotentiating activity of food microorganisms and enhancement of the immune response by Bifidobacterium adolescentis M101-4. Biosci. Biotech. Bioch. 57: 2127-2132 (1993) https://doi.org/10.1271/bbb.57.2127
  14. Lee JH. Immunostimulative effect of commercial Bifidobacteria used in yogurt culture starters. Food Sci. Biotechnol. 7: 46-50 (1998)
  15. Park KY. The nutritional evaluation and antimutagenic and anti cancer effect of kimchi. J. Korean Soc. Food Nutr. 24: 160-182 (1995)
  16. Mheen TI, Kwon TW. Effect of temperature and salt concentration on kimchi fermentation. Korean J. Food Sci. Technol. 16: 443-450 (1984)
  17. Lee CW, Ko CY, Ha DM. MicrofIorai changes of the lactic acid bacteria during kimchi fermentation and identification of the Isolates. Korean J. Appl. Microbiol. Biotechnol. 20: 102-109 (1992)
  18. Rhee CH, Park HD. Isolation and characterization of lactic acid bacteria producing antimutagenic substance from Korean kimchi. Korean J. Appl. Microbiol. Biotechnol. 27: 15-22 (1999)
  19. Lee NK, Kim HW, Chang HI, Yun CW, Kim SW, Kang CW, Paik HD. Probiotic properties of Lactobacillus plantarum NK181 isolated fromjeotgal, a Korean fermented food. Food Sci. Biotechnol. 15: 227-231 (2006)
  20. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 16: 55-63 (1983)
  21. Suzuki I, Hashimoto K, Yadomae T. Rapid preparation of functional murine Peyer's patch cells. Biosci. Microflora 9: 87-98 (1990)
  22. Sekine K, Toida T, Saito M, Kuboyama M, Kawashima T, Hashimoto Y. A new morphologically characterized cell wall preparation (whole peptidoglycan) from Bifidobacterium infantis with a higher efficacy on the regression of an established tumor in mice. Cancer Res. 45: 1300-1307 (1985)
  23. Ametani A, Kaminogawa S, Shimizu M, Yamauchi K. Rapid screening of antigenically reactive fragments of alpha $S_1$-cascin using HPLC and ELISA. J. Biochem. 102: 421-425 (1987) https://doi.org/10.1093/oxfordjournals.jbchem.a122069
  24. Stossel TP. Phagocytosis. p. 313. In: Manual of Clinical Immunology. Rose N, Friedman H (eds). American Society for Microbiology, Washington, DC, USA (1980)
  25. Conchie J, Findlay J, Levy G Mammalian gIycosidases. Distribution in the body. Biochem. J. 71: 318-325 (1959) https://doi.org/10.1042/bj0710318
  26. Dong W, Azcona-Olivera JI, Brooks KH, Linz JE, Pestka JJ. Elevated gene expression and production of interleukins 2, 4, 5, and 6 during exposure to vomitoxin (deoxynivalenol) and cycloheximide in the EL-4 thymoma. Toxicol. Appl. Pharm. 127: 282-290 (1994) https://doi.org/10.1006/taap.1994.1163
  27. Bienenstock J, Befu ADs. Mucosal immunology. Immunology 41: 249-270 (1980)
  28. Elson CO, Ealding W. Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. J. Immunol. 132: 2736-2741 (1984)
  29. Kawata S, Takemura T, Yokogawa Y. Characterization of two Nacetylmuramidases from Streptomyces globisporus 1829. Agr. Biol. Chem. Tokyo 47: 1501-1508 (1983) https://doi.org/10.1271/bbb1961.47.1501
  30. Damais C, Bona C, Chedid L, Fleck J, Nauciel C, Martin JP. Mitogenic effect of bacterial peptidoglycans possessing adjuvant activity. J. Immunol. 115: 268-271 (1975)
  31. Dziarski R, Dziarski A. Mitogenic activity of staphylococcal peptidoglycan. Infect. Immun. 23: 706-710 (1979)
  32. Kitazawa H, Yamaguchi T, Itoh T. B-cell mitogenic activity of slime products produced from slime-forming, encapsulated Lactococcus lactis ssp. cremoris. J. Dairy Sci. 75: 2946-2951 (1992) https://doi.org/10.3168/jds.S0022-0302(92)78057-6
  33. Gronowicz E, Coutinho A. Functional analysis of B cell heterogeneity. Transplant. Rev. 24: 3-40 (1975)
  34. Kitazawa H, Nomura M, Itoh T, Yamaguchi T. Functional alteration of macro phages by a slime-forming Lactococcus lactis ssp. cremoris. J. Dairy Sci. 74: 2082-2088 (1991) https://doi.org/10.3168/jds.S0022-0302(91)78380-X
  35. Perdigon G, Macias MEN, Alvarez S, Oliver G, Holgado AAPR. Effect of perorally administered lactobacilli on macrophage activation in mice. Infect. Immun. 53: 404-410 (1986)
  36. Schiffiin EJ, Rochat F, Link-Amster H, Aeschlimann IN, DonnetHughes A. Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J. Dairy Sci. 78: 491-497 (1995) https://doi.org/10.3168/jds.S0022-0302(95)76659-0
  37. Abbas AK, Lichtman AH, Pobe JS. Cytokines. p. 240. In: Cellular and Molecular Immunology. Saunders Co., Philadelphia, PA, USA (1994)
  38. De Simone C, Bianchi Salvadori B, Jirillo E, Baldinelli L, Bitonti F, Vesely R. Modulation of immune activities in humans and animals by dietary lactic acid bacteria. p. 201. In: Yogurt: Nutritional and Health Properties. Chandan RC (ed). National Yogurt Association, Mc Lean, VA, USA (1989)