Effect of a Functional Food Containing Bacillus polyfermenticus on Dimethylhydrazine-Induced Colon Aberrant Crypt Formation and the Antioxidant System in Fisher 344 Male Rats

  • Park, Jun-Seok (Division of Animal Life Science, Konkuk University) ;
  • Kim, Kee-Tae (Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Hyun-Sook (Department of Food and Nutrition, Sookmyung Women s University) ;
  • Paik, Hyun-Dong (Division of Animal Life Science, Konkuk University) ;
  • Park, Eun-Ju (Department of Food and Nutrition, Kyungnam University)
  • Published : 2006.12.31

Abstract

The goal of this study was to investigate the effects of a newly developed functional food containing Bacillus polyfermenticus (BP) and other physiologically active materials on the antioxidant system and the process of colon carcinogenesis in male F344 rats. Following a one-week adaptation period, the rats were divided into 3 groups and fed either a high-fat, low-fiber diet (control and DMH groups), or a high-fat, low-fiber diet supplemented with B. polyfermenticus ($3.1{\times}10^8\;CFU/day$) and other physiologically active materials (chitosan, chicory, ${\alpha}$-tocopherol, and flavonoids) (DMH+BP group). One week after the initiation of the diets, 2 groups of rats were subjected to six weeks of treatment with 1,2-dimethylhydrazine (DMH, 180 mg/kg BW, s.c.). The dietary treatments remained consistent throughout the entire experimental period. Nine weeks after the initial DMH injection, the rats supplemented with B. polyfermenticus had significantly lower numbers of aberrant crypt foci than those in the DMH group. Injections with DMH resulted in significantly higher leukocytic DNA damage and plasma lipid peroxidation levels, as well as in a lower plasma total antioxidant potential. These effects were reversed following supplementation with B. polyfermenticus and other physiological materials. Our results indicate that a functional food containing B. polyfermenticus exerts a protective effect on the antioxidant system and on the process of colon carcinogenesis, thereby suppressing the development of preneoplastic lesions.

Keywords

References

  1. Reid GM. Sanders E, Gaskins HR, Gibson GR, Mercenier A, Rastall R, Roberfroid M, Rowland I, Cherbut C, Klaenhammer TR. New scientific paradigms for probiotics and prebiotics. J. Clin. Gastroenterol. 37: 105-118 (2003) https://doi.org/10.1097/00004836-200308000-00004
  2. Jayaprakasha HM, Yoon YC, Paik HD. Probiotic functional dairy foods and health claims: an overview. Food Sci. Biotechnol. 14: 523-528 (2005)
  3. Jun KD, Lee KH, Kim WS, Paik HD. Microbiological identification of medical probiotic bispan strain. J. Appl. Microbiol. Biotechnol. 28: 124-127 (2000)
  4. Jeong BY, Kim TH, Park JS, Kim KT, Paik HD. Antioxidative and cholesterol-reducing activity of Bacillus polyfermenticus SCD. Korean J. Biotechnol. Bioeng. 18: 371-376 (2003)
  5. Park EJ, Park JS, Paik lID. Effect of Bacillus polyfermenticus SCD and its bacteriocin on MNNG-induced DNA damage. Food Sci. Biotechnol. 13: 684-688 (2004)
  6. Ji BT, Devesa SS, Chow WH, Jin F, Gao YT. Colorectal cancer incidence trends by subsite in urban Shanghai, 1972-1994. Cancer Epidem. Biomar. 7: 661-666 (1998)
  7. Brady LJ, Gallaher DD, Busta FF. The role of probiotic cultures in the prevention of colon cancer. J. Nutr. 130: 410S-414S (2000) https://doi.org/10.1093/jn/130.2.410S
  8. Bird R. Role of aberrant crypt foci in understanding the pathogenesis of colon cancer. Cancer Lett. 93: 55-71 (1995) https://doi.org/10.1016/0304-3835(95)03788-X
  9. Ohishi T, Kishimoto Y, Miura N, Shiota C\ Kohri T, Hara Y, Hasegawa J, Isemura M. Synergistic effects of (-)-epigallocatechin gallate with sulindac against colon carcinogenesis of rats treated with azoxymethane. Cancer Lett. 177: 49-56 (2002) https://doi.org/10.1016/S0304-3835(01)00767-4
  10. Finley JW, Davis CD, Feng Y Selenium from high selenium broccoli protects rats from colon cancer. J. Nutr. 130: 2384-2389 (2000)
  11. Bartsch H, Nair J. Potential role of lipid peroxidation derived DNA damage in human colon carcinogenesis: studies on exocyclic base adducts as stable oxidative stress markers. Cancer Detect. Prev. 26: 308-312 (2002) https://doi.org/10.1016/S0361-090X(02)00093-4
  12. Korenaga D, Takesue F, Kido K, Yasuda M, Inutsuka S, Honda M, Nagahama S. Impaired antioxidant defense system of colonic tissue and cancer development in dextran sulfate sodium-induced colitis in mice. J. Surg. Res. 102: 144-149 (2002) https://doi.org/10.1006/jsre.2001.6314
  13. Nair S, Norkus EP, Hertan H, Pitchumoni CS. Serum and colon mucosa micronutrient antioxidants: differences between adenomatous polyp patients and controls. Am. J. Gastroenterol. 96: 3400-3405 (2002) https://doi.org/10.1111/j.1572-0241.2001.05341.x
  14. Payne CM, Bernstein C, Bernstein H, Gerner EW, Garewal H. Reactive nitrogen species in colon carcinogenesis. Antioxid. Redox. Signal 1: 449-467 (1999) https://doi.org/10.1089/ars.1999.1.4-449
  15. Lee KH, Jun KD, Kim WS, Paik HD. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Lett. Appl. Microbiol. 32: 146-151 (2001) https://doi.org/10.1046/j.1472-765x.2001.00876.x
  16. National Research Council. Guide for the care and use of laboratory animals, National Academy Press, Washington, DC, USA (1996)
  17. Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123:1939-1951 (1993) https://doi.org/10.1093/jn/123.11.1939
  18. Singh PN, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell. Res. 175: 184-191 (1988) https://doi.org/10.1016/0014-4827(88)90265-0
  19. Rice-Evans C, Miller NJ. Total antioxidant status in plasma and body fluids. pp. 279-293. In: Methods in Enzymology. Academic Press, Inc., New York, NY, USA (1994)
  20. Ahotupa M, Marniemi J, Lehtimaki T, Talvinen K, Raitakari O, Vasankari T, Viikari J, Luoma J, YHi-Herttuala S. Baseline diene conjugation in LDL lipids as a direct measure of in vivo oxidation. Clin. Biochem. 31: 257-261 (1998) https://doi.org/10.1016/S0009-9120(98)00018-6
  21. Salim AS. The permissive role of oxygen-derived free radical in the development of colonic cancer in the rat: a new theory for carcinogenesis. Int. J. Cancer 53: 1031-1035 (1993) https://doi.org/10.1002/ijc.2910530629
  22. Goldin BR. Chemical induction of colon tumours in animals: an overview. pp.319- 333. In: Basic and Clinical Perspectives of Colorectal Polyps and Cancer. Alan R. Liss., Inc., New York, NY, USA (1988)
  23. Sun Y. Free radicals, antioxidant enzymes and carcinogenesis. Free Radical. Bio. Med. 16: 275-282 (1990)
  24. Bobek P, Galbavy S, Mariassyova M. The effect of red beet (Beta vulgaris var. rubra) fiber on alimentary hypercholesterolemia and chemically induced colon carcinogenesis in rats. Nahrung 44: 184-187 (2000) https://doi.org/10.1002/1521-3803(20000501)44:3<184::AID-FOOD184>3.0.CO;2-P
  25. Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51: 794-798 (1991)
  26. Park KY, Jung HY, Woo KL, Jun KD, Kang JS, Paik RD. Effects of Bacillus polyfermenticus SCD administration on fecal microflora and putrefactive metabolites in healthy adults. J. Microbiol. Biotechn. 12: 657-663 (2002)
  27. Ito M, Ohishi K, Yoshida Y, Yokoi W, Sawada H. Antioxidative effects of lactic acid bacteria on the colonic mucosa of ironoverloaded mice. J. Agr. Food Chem. 51: 4456-4460 (2003) https://doi.org/10.1021/jf0261957
  28. Lin MY, Yen CL. Inhibition of lipid peroxidation by Lactobacillus acidophilus and Bifidobacterium longum. J. Agr. Food Chem. 47: 3661-3664 (1999) https://doi.org/10.1021/jf981235l
  29. Lin MY, Chang FJ. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digest Dis. Sci. 45: 1617-1622 (2000) https://doi.org/10.1023/A:1005577330695
  30. Stecchini ML, Del Torre M, Munari M. Determination of peroxy radical-scavenging of lactic acid bacteria. Int. J. Food Microbiol. 64: 183-188 (2001) https://doi.org/10.1016/S0168-1605(00)00456-6
  31. Kaizu H, Sasaki M, Nakajima H, Suzuki Y. Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J. Dairy Sci. 76: 2493-2499 (1993) https://doi.org/10.3168/jds.S0022-0302(93)77584-0
  32. Herrera E, Barbas C. Vitamin E: action, metabolism and perspectives. J. Physiol. Biochem. 57: 43-56 (2001) https://doi.org/10.1007/BF03179812
  33. Rice-Evans C. Flavonoid antioxidants. Curr. Med. Chem. 8: 797-807 (2001) https://doi.org/10.2174/0929867013373011
  34. Xie W, Xu P, Liu Q. Antioxidant activity of water-soluble chitosan derivatives. Bioorg. Med. Chem. Lett. 11: 1699-1701 (2001) https://doi.org/10.1016/S0960-894X(01)00285-2
  35. Xue C, Yu G, Hirata T, Terao J, Lin H. Antioxidative activities of several marine polysaccharides evaluated in a phosphatidy1cholineliposomal suspension and organic solvents. Biosci. Biotech. Bioch. 62: 206-209 (1998) https://doi.org/10.1271/bbb.62.206
  36. Llorach R, Tomas-Barberan FA, Ferreres F. Lettuce and chicory byproducts as a source of antioxidant phenolic extracts. J. Agr. Food Chem. 52: 5109-5116 (2004) https://doi.org/10.1021/jf040055a
  37. Barth SW, Fahndrich C, Bub A, Dietrich H, Watzl B, Will F, Briviba K, Rechkemmer G, Cloudy apple juice decreases DNA damage, hyperproliferation and aberrant crypt foci development in the distal colon of DMH-initiated rats. Carcinogenesis 26: 1414-1421 (2005) https://doi.org/10.1093/carcin/bgi082
  38. Povey AC, Hall CN, Cooper DP, O'Connor PJ, Margison GP. Determinants of O(6)-alkylguanine-DNA alkyltransferase activity in normal and tumour tissue from human colon and rectum. Int. J. Cancer 85: 68-72 (2000) https://doi.org/10.1002/(SICI)1097-0215(20000101)85:1<68::AID-IJC12>3.0.CO;2-0
  39. Fairbairn OW, Olive PL, O'Neill KL. The comet assay: a comprehensive review. Mutat. Res. 339: 37-59 (1995) https://doi.org/10.1016/0165-1110(94)00013-3
  40. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu IC, Sasaki YF. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 35: 206-221 (2000) https://doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J
  41. Whitney AR, Diehn M, Popper SI, Alizadeh AA, Boldrick IC, Reiman DA, O'Brown PO. Individuality and variation in gene expression patterns in human blood. P. Natl. Acad. Sci. USA 100: 1896-1901 (2003)
  42. Pool-Zobel BL, Lambertz R, Knoll M, Seitz HK. Genetic damage and repair in human rectal cells for biomonitoring: Sex differences, effects of alcohol exposure, and susceptibilities in comparison to peripheral blood lymphocytes. Mutat. Res. 551: 127-134 (2004) https://doi.org/10.1016/j.mrfmmm.2004.03.007
  43. Pretlow TP, O'Rioridan MA, Somich GA, Amini SB, Pretlow TG. Aberrant crypts: Putative preneoplastic foci in human colonic mucosa. Cancer Res. 51: 1564-1567 (1991)
  44. Konstantakos AK, Siu IM, Pretlow TG, Stellato TA, Pretlow TP. Human aberrant crypt foci with carcinoma in situ from a patient with sporadic colon cancer. Gastroenterology 111: 772-777 (1996) https://doi.org/10.1053/gast.1996.v111.pm8780584
  45. Metz N, Lobstein A, Schneider Y, Gosse F, Schleiffer R, Anton R, Raul F. Suppression of azoxymethane-induced preneoplastic lesions and inhibition of cyclooxygenase-2 activity in the colonic mucosa of rats drinking a crude green tea extract. Nutr. Cancer 38: 60-64 (2000) https://doi.org/10.1207/S15327914NC381_9
  46. Abdelali H, Cassand P, Soussotte V, Daubeze M, Bouley C, Narbonne IF. Effect of dairy products on initiation of precursor lesions of colon cancer in rats. Nutr. Cancer. 24: 121-132 (1995) https://doi.org/10.1080/01635589509514400
  47. Brady LJ, Gallaher DO, Busta FF. The role of probiotic cultures in the prevention of colon cancer. J. Nutr. 130: 410S-414S (2000) https://doi.org/10.1093/jn/130.2.410S
  48. Bolognani F, Rumney CI, Pool-Zobel BL, Rowland IR. Effect of lactobacilli, bifidobacteria and inulin on the formation of aberrant crypt foci in rats. Eur. J. Nutr. 40: 293-300 (2001) https://doi.org/10.1007/s394-001-8359-7
  49. Imaida K, Hirose M, Yamaguchi S, Takahashi S, Ito N. Effects of naturally occurring antioxidants on combined 1,2-dimethylhydrazine-and 1-methyl-1-nitrosourea-initiated carcinogenesis in F344 male rats. Cancer Lett. 55: 53-59 (1990) https://doi.org/10.1016/0304-3835(90)90065-6
  50. Agner AR, Bazo AP, Ribeiro LR, Salvadori DM. DNA damage and aberrant crypt foci as putative biomarkers to evaluate the chemopreventive effect of annatto (Bixa orellana L.) in rat colon carcinogenesis. Mutat. Res. 582: 146-154 (2005) https://doi.org/10.1016/j.mrgentox.2005.01.009
  51. Flamm G, Glinsmann W, Kritchevsky D, Prosky L, Roberfroid M. Inulin and oligo fructose as dietary fiber: a review of the evidence. Crit. Rev. Food Sci. 41: 353-362 (2001) https://doi.org/10.1080/20014091091841
  52. Pool-Zobel BL. Inulin-type fructans and reduction in colon cancer risk: review of experimental and human data. Brit. J. Nutr. 93: S73-90 (2005) https://doi.org/10.1079/BJN20041349
  53. Exon IH, South EH, Taruscio TG, Clifton GO, Fariss MW. Chemopreventive effect of dietary d-alpha-tocopheryl succinate supplementation on precancer colon aberrant crypt formation and vitamin E analogue levels in young and old rats. Nutr. Cancer 49: 72-80 (2004) https://doi.org/10.1207/s15327914nc4901_10
  54. Nho N, Mutoh M, Sakano K, Takahashi M, HiranoS, Nukaya H, Sugimura T, Wakabayashi K. Inhibition of intestinal carcinogenesis by a new flavone derivative, chafuroside, in oolong tea. Cancer Sci. 97: 248-251 (2006) https://doi.org/10.1111/j.1349-7006.2006.00167.x
  55. Volate SR, Davenport DM, Muga SI, Wargovich MJ. Modulation of aberrant crypt foci and apoptosis by dietary herbal supplements (quercetin, curcumin, silymarin, ginseng, and rutin). Carcinogenesis 26: 1450-1456 (2005) https://doi.org/10.1093/carcin/bgi089
  56. Takahashi T, Takasuka N, Iigo M, Baba M, Nishino H, Tsuda H, Okuyama T. Isoliquiritigenin, a flavonoid from licorice, reduces prostaglandin E2 and nitric oxide, causes apoptosis, and suppresses aberrant crypt foci development. Cancer Sci. 95: 448-453 (2004) https://doi.org/10.1111/j.1349-7006.2004.tb03230.x