Cytotoxicity of Hyaluronic Acid Membrane Cross-linked with Lactide

락타이드로 가교시킨 히아루론산 막의 세포독성

  • Kim, Won-Jung (Department of Biological Sciences, Hannam University) ;
  • Kwon, Ji-Young (Department of Chemical Engineering and Nano-Bio Technology, Hannam University) ;
  • Cheong, Seong-Ihl (Department of Chemical Engineering and Nano-Bio Technology, Hannam University) ;
  • Kim, In-Seop (Department of Biological Sciences, Hannam University)
  • 김원중 (한남대학교 생명과학과) ;
  • 권지영 (한남대학교 나노생명화학공학과) ;
  • 정성일 (한남대학교 나노생명화학공학과) ;
  • 김인섭 (한남대학교 생명과학과)
  • Published : 2006.08.30

Abstract

The biodegradable hyaluronic acid(HA) membranes cross-linked with lactide using the crosslinking agent, 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide(EDC) were prepared as a potential biocompatible material for tissue engineering. HA membranes having different mechanical properties were synthesised by varying degree of the mole ratio of lactide to HA, EDC concentration, and crosslinking temperature. HA membranes were degradable in water solution and the degradation became slower with the increasing mole ratio of lactide to HA. HA membranes were sterilized using ethylene oxide gas and extracted with cell culture medium for 24 h at $37^{\circ}C$ and 200 rpm. Cytotoxicity of the extract was tested using NIH/3T3 mouse embryo fibroblast as a model cell. Growth inhibition was not observed in the extracts of HA membranes with the mole ratios of lactide to HA, 5 or 10, and 10% EDC concentration, however 11% of growth inhibition was observed in the extract with the mole ratio of 13. Growth inhibition was not observed in the extracts of HA membranes prepared with 5% EDC or 10% EDC and the mole ratio of lactide to HA, 10, however 12% of growth inhibition was observed in the extract with 20% EDC. Cytotoxicity was not observed in the extracts of HA membranes prepared at varying crosslinking temperatures, $15^{\circ}C,\;25^{\circ}C,\;and\;28^{\circ}C$ with the mole ratio of lactide to HA, 10 and 10% EDC.

생체 적합성이 우수한 히아루론산과 생분해성이 우수한 폴리락타이드의 이량체인 락타이드의 혼합 몰비, 가교제 EDC 농도, 가교 온도 등의 반응 조건을 변화시켜 생체적합성 고분자막을 제조하였다. 히아루론산에 대한 락타이드의 혼합 몰비가 증가할수록 수용액상에서의 분해속도는 감소하였다. 합성된 고분자막을 ethylene oxide gas로 멸균 한 후 세포배양배지를 첨가하여 $37^{\circ}C$에서 200 rpm으로 24 시간동안 교반하면서 침출물을 추출한 다음 NIH/3T3 섬유아세포에 대한 세포독성을 측정하였다. EDC 농도 10% 조건에서 히아루론산에 대한 락타이드의 혼합 몰비가 5 또는 10에서는 세포독성을 나타내지 않았지만 몰비 13에서는 11% 정도의 성장저해를 나타내었다. 혼합 몰비를 10으로 고정하고 가교 온도 $15^{\circ}C$에서 EDC의 농도를 5%, 10%, 20%로 변화시켜을 때, EDC 농도가 20%인 경우에서만 12% 정도의 성장저해를 나타내었다. 혼합 몰비 10, EDC 농도 10% 조건에서 가교 온도를 $15^{\circ}C,\;25^{\circ}C,\;28^{\circ}C$로 변화시켰을 때, 가교 온도에 따른 세포독성은 나타나지 않았다. 따라서 락타이드와 히아루론산의 몰비와 EDC의 농도를 조절함으로써 인체 내에서 분해 속도를 조절할 수 있는 새로운 생체적합성 고분자막을 제조할 수 있을 것으로 사료된다.

Keywords

References

  1. Wichterle, O. and D. Lim (1960), Hydrophilic gels for biological use, Nature 185, 117-118 https://doi.org/10.1038/185117a0
  2. Krsko, P. and M. Libera (2005), Biointeractive hydrogels, Materials Today 8, 36-44
  3. Khang, G., M. S. Kim, S. H. Cho, H. B. Lee, J. H. Chang, and K. J. Kim (2003), Recent develpoment trend of stimuli sensitive hydrogels, Polym. Sci. and Tech. 14, 431-437
  4. Lim, F. and A. M. Sun (1980), Microencapsulation of islets as bioartificial endocrine pancreas, Science 210, 908-910 https://doi.org/10.1126/science.6776628
  5. Park, Y. D., N. Tirelli, and J. A. Hubbell (2003), Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks, Biomaterials, 24, 893-900 https://doi.org/10.1016/S0142-9612(02)00420-9
  6. Prestwitch, G. D., D. M. Marecak, and J. F. Marecek (1998), Controlled chemical modification of hyaluronin acid: synthesis, applications, and biodegradation of hydrazide derivatives, J. Control. Rel. 53, 93-103 https://doi.org/10.1016/S0168-3659(97)00242-3
  7. Luo, Y., K. R. Kirker, and G. D. Prestwich (2000), Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery, J. Control. Rel. 69, 169-184 https://doi.org/10.1016/S0168-3659(00)00300-X
  8. Park, S. N., H. J. Lee, K. H. Lee, and H. Suh (2002), Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking, Biomaterials 22, 1205-1212
  9. Park, S. N., H. J. Lee, K. H. Lee, and H. Suh (2003), Biological characterization of EDC-crosslinked collagen-hyaluronic acid matrix in dermal tissue restoration, Biomaterials 24, 1631-1641 https://doi.org/10.1016/S0142-9612(02)00550-1
  10. Nam, H. S., J. H. Kim, J. H. An, and D. J. Jung (2001), Synthesis of Hyaluronic acid scaffold for tissue engineering and evaluation of its drug release behaviors, Polymer(Korea), 25, 476-485
  11. Tokita, Y. and A. Pkamoto (1996), Degradation of hyaluronic acid-Kinetic study and thermodynamics, Eur. Polym. J. 32, 1011-1014 https://doi.org/10.1016/0014-3057(96)00019-5
  12. Zhong, S. P., D. Campoccia, P. J. Doherty, R. L. Willians, L. Benedetti, and D. F. Williams (1994), Biodegradation of hyaluronic acid derivatives by hyaluronidase, Biomaterials 15, 359-368 https://doi.org/10.1016/0142-9612(94)90248-8
  13. Lee, J. S., D. J. Choo, S. H. Kim, and Y. H. Kim (1998), Synthesis and degradation property of star-shaped polylactide, Polymer(Korea), 22, 880-889
  14. Grandfils, C., P. Flandroy, and R. Jerome (1996), Control of the biodegradation rate of poly(DL-lactide) microparticles intended as chemoembolization materials, J. Control. Rel. 38, 109-122 https://doi.org/10.1016/0168-3659(95)00102-6
  15. Fukuzaki, H., M. Yoshida, M. Asano, and M. Kumakura (1989), Synthesis of copoly(D,L-lactic acid) with relatively low molecular weight and in vitro degradation, Eur. Polym. J. 25, 1019-1026 https://doi.org/10.1016/0014-3057(89)90131-6
  16. Li, S., M. Tenon, H. Garreau, C. Braud, and M. Vert (2000), Enzymatic degradation of stereocopolymers derived from L–, D,L - and meso-lactides, Polym. Deg. and Stab. 67, 85-90 https://doi.org/10.1016/S0141-3910(99)00091-9
  17. Kwon, J. Y. and S. I. Cheong (2005), Characterization of Hyaluronic Acid Membrane Containing Lactic Acid, Membrane J.(Korea) 15, 8-14
  18. Oh, S. H., J. Y. Lee, S. H. Ghil, S. S. Lee, S. H. Yuk, and J. H. Lee (2006), PCL microparticle-dispersed PLGA solution as a potential injectable urethral bulking agent, Biomaterials 27, 1936-1944 https://doi.org/10.1016/j.biomaterials.2005.09.030
  19. Kuo, J. W., D. Swann, and G. D. Prestwich (1991), Chemical modification of hyaluronic acid by carboiimides, Bioconjugate Chem. 2, 232-241 https://doi.org/10.1021/bc00010a007
  20. Miranda, L. F., A. B. Lugao, L. D. B. Machado, and L. V.Ramanathan (1999), Crosslinking and degradation of PVP hydrogels as a function of dose and PVP concentration, Radia. Phys. Chem. 55, 709-712 https://doi.org/10.1016/S0969-806X(99)00216-9
  21. Marques, A. P., R. L. Reis, and J. A. Hunt (2002), The biocompatibility of novel starch-based polymers and composites: in vitro studies, Biomaterials 23, 1471-1478 https://doi.org/10.1016/S0142-9612(01)00272-1