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Abstract

Claim history data of rather long period were collected to assess reliability and warranty cost analyses.
The data were appropriately organized to be used for further statistical analyses. For each critical component,
nonparametric statistical method was applied to obtain reliability plot. Hazard plots of the components in
a subsystem or system level were also obtained. Competing risk model was assumed to obtain the perform-

ance of the subsystem or system level.

1. Introduction

Quality assurance programs are becoming
popular. Some of the sectors in the automobile in—
dustry have begun warranty systems in which
every new car is warranted for an extended peri-
od of time. Especially some parts of the automo-
bile such as engine and transmission are under
warranty for more than 5 years, which means that
people are reporting their problems with their
cars for much longer period of time than before.
Therefore manufacturers now have an access to
rather reliable warranty data of long history. The
problem is how the manufacturers can use the
warranty data so that any valuable information
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can be extracted from them. A key concern would
be the estimation and control of reliability and
warranty cost elements associated with warranty
[4, 6]. Research has been done on warranty data
analysis [5, 7, 8, 15].

Several different types of analyses can be for-
mulated ; one-dimensional or two—dimensional
analysis, analysis assuming renewal or non-
homogeneous Poisson process, and component
level or subsystem (or system) level analysis. For
instance, we can focus on subsystem (or system)
level analysis assuming minimal repair (nonho-
mogeneous Poisson process) in one or two
dimensions. Rai and Singh [13] find interesting
results modeling mileage in addition to age. See
also Rai and Singh [12] and Majeske [10].

Various models have been proposed for re-
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pairable systems. Asher and Feingold [2] re-
viewed some ofthese models, including homoge-
neous Poisson process (HPP), nonhomogeneous
Poisson process (NHPP) and renewal process.
HPP can be used if the distribution of time be-
tween failures is assumed to be an exponential
distribution. HPP is a special type of renewal
process in which the inter—arrival times have an
exponential distribution with the same renewal
rate throughout the observed period. This simple
model may not be appropriate in mechanical com—
ponents since there may be a change in the hazard
rate over time.

NHPP is a good model for a repairable system
because it can model systems that are deteriorat-
ing or improving over time. Especially, it is ap-
propriate in mechanical components since the
system is deteriorating after repair. Baik, Murthy
and Jack [3] dealt with NHPP with two-di-
mensions. In this case study, however, competing
risk model is used to model the behavior of the
subsystem and system levels for one dimension.

We optimistically assume that each component
after repair (or replacement) functions a new and
we focus on one-dimensional (namely age) re-
newal process at the component level and use the
result in the subsystem (or system) level
analysis. We deal with completely observed
process of claim history [9, 111].

In this case study the warranty data on engine
were collected in an Excel format and given to da-
ta analyst. We show how to identify critical com-
ponents in engine from the raw warranty data, and
how to form a conceptual population for each crit—
ical component and perform reliability analysis. In
addition, since a subassembly (subsystem) is
composed of several critical components and
since each assembly (system) is again composed
of several subassemblies we show how to per-
form the reliability analysis at the subassembly
and assembly levels. These types of reliability
analysis can help the management with the deci-
sion on how to improve components, subassem-

blies and assembly, and reduce the warranty cost.

This case study starts with raw claim data col-
lected from the A/S centers and handed over to
the data analyst. The data are incomplete in the
sense that some information is missing and some
are even incorrect. In order for the analyses to be
valid the data itself have to be reliable. Therefore,
in Section 2 the raw claim data received are
screened out so that only relevant data for the
study could remain. Then critical components are
identified in terms of the number of claims. Last
of all, critical components are grouped into sev—
eral categories (subassemblies). In Section 3 a
valid conceptual population is formed for each
critical component assuming that the car is re—
newed every time repair or replacement takes
place. Analyses at the component, subassembly
and assembly levels will be performed in later
sections with the conceptual population. In form-
ing a population for each component the cars that
have been sold but not been claimed are used to
generate censored lives. Claimed cars have also
been used to generate data since they produce
failure times as well as censored times. In the lat-
ter case censored times are calculated as the re-
pair or replacement time (last repair or replace-
ment time if there were more than one claim on
the same component in a car) to the data collec-
tion time. In Section 4 reliability analysis is per—
formed at the component level. Simple parametric
models such as Weibull and Lognormal dis-
tributions are tried to the appropriate data at the
component level. However, they turned out to be
irrelevant to the current warranty data of long
history. Therefore, nonparametric methods are-
used to obtain reliability and hazard rate func-
tions. In Section 5 analyses at the subassembly
and assembly levels are performed based on the
analyses at the component levels assuming in-
dependence among components failures and
competing risk model. Specifically hazard plot for
each subassembly can be obtained. Last of all, in
Section 6 summary of what was found in this case
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study is given.

2. Data screening and critical
component identification

In any company there are a lot of data : sales
data, warranty data, and maintenance data to
name a few. However, since a lot of them are ob-
servatory data in essence, not experimental data,
it takes some time to sort out meaningful data
needed for any analysis. Sometimes it is impos—
sible to get any reliable data for the purpose. In
this section, we will show how to screen raw data
to find critical components in engine. First of all,
we explain about our raw claim data. But for con-
fidential reason, we will only introduce relevant
data for the study. The claim data consist of 1 to
5 years of claim history with several columns of
interest to the data analyst : vehicle identi-
fication number (VIN), production date (PD),
sales date (SD), repair (or replacement) date
(RD), component of the cause (CC), failure mode
(FM), cause of the failure (CF), repaired (or re-
placed) component (RC), dealer code (DC).
Therefore, for each claim VIN, PD, SD, RD, CC,
FM, CF, RC and DC were recorded. Note that CC
isthe component of the suspected or possible
cause of the problem when the car came in to the
A/S center while RC is actually the repaired or re-
placed component to rectify the claim. RC could
be different from CC for some claims.

The data that had been handed over to the data
analyst contained some irrelevant data for the
study. For instance, some data belonged to some
other types of cars that were of no interest for the
study. In addition to the obvious irrelevant data,
there were some dubious parts to them. More
specifically, RC’s were missing for more than half
of the claim data. They could have been CC’s. Or
it could have been that there was just minor ad-
justment to CC’s, or neither repair nor re-
placement. Thus, when we identify critical com-
ponents in engine the claim data with missing

RC’s were ignored in order not to use incorrect

information.

cumulative % of failures

number of components

<Figure 1> Pareto analysis for component failures

The first descriptive statistics relates to fre—
quency of failures for different components and
the Pareto analysis is shown in <Figure 1>. It
turned out that less than 20% of the components
were responsible for almost 90% of the claims
and so these components are termed “critical”
components.

<Table 1> Partial Pareto analysis of failure

order co?;izem freq % filgs freq % ofc?:ii?re freq %
1 Co, 21% | FMy, | 94% | CFy 38%
Others | 12%
Others | 6%
2 co, 6% | FM, | 57% | CFy | 3%
CE, | 32%
CFy | 15%
Others | 19%
FMy, | 3% | CFn | %%
CFhy | 17%
CFy, 16%
Others | 11%
Others | 9%

Analysis for the failure modes and causes for
the critical components were carried out and the
results for the first two critical components are
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shown in <Table 1>. Each of the critical compo-
nents can be categorized into several disjoint
subassemblies with electronic and sealing sub-
assemblies accounting for bulk of the claims.
Since almost all of the critical components are
under warranty except only a few we will assume
that each of them contributes to the analysis at the
subassembly or assembly level in Section 5.

3. Population formation

In this section, we are concerned about for-
mation of a conceptual population for each critical
component because we want to know how reli-
ability changes as time goes by. In the previous
section, claim data with missing RC’s have been
deleted when we identify critical components.
However, it will overestimate (underestimate)
the reliability (warranty cost) if we completely
ignore them when we perform reliability and
analysis. Therefore, we replace the missing RC's
by CC’s. However, in this case some of the rows
in the database become identical. Then they have
been treated as same claims.

Now we want to form an appropriate population
for each component. Following Subsections 3.1
and 3.2 focus on how to get the number of cen—
sored cars for our warranty data, thereby cen-
sored lives to be added to the population. Subsec-
tion 3.3 focuses on how to extract lives (failure
and censored)from the claim data. In Subsection
3.4 both data in the previous subsections are
combined to form a population for each critical
component.

3.1 Adjusted monthly number of cars
sold based on claim data received

The data analyst received the actual monthly
number of cars sold for a particular type of model
from the manufacturer. However, we need to ad-
just the figures because the data analyst received
only a fraction of the whole claim data from the

manufacturer due to their reluctance to give away
all of their claim data. In addition, since the data
we received from the company were arranged in
terms of production date with no record of sales
date, the average time lag between production
and sales was taken into account to get an ad-
justed data acquisition rate for each year. In some
yvears the adjusted data acquisition rates were as
low as 25%. We used the adjusted data acquisition
rate to get the monthly—adjusted number of cars
sold.

3.2 Monthly number of censored cars
and censored lives

Censored lives from censored cars are easy to
get in principle since they can be considered to be
the sales date to the data collection date. There~
fore, in our data first it is necessary to arrange the
data in terms of the sales month. However, there
were some data with sales dates of 01/01/1900
due to recording error. And some cars, if not
many, even had sales dates of 01/01/2000 while
the first repair or replacement was performed in
1999. Since there were not many data of those
types we could have ignored them. But since we
wanted to use all the information we had we used
the mileages of those cars with correct sales
dates to estimate the censored lives and included
them in the database. The regression line drawn
from the claim data with correct sales dates turns
out to be ‘Mileage = 49.3(miles) * Days’. Howev-
er, note that the regression line was obtained only
from claim data excluding censored lives coming
from the censored cars.

Now we can get the monthly number of claimed
cars from the above augmented database. And we
can obtain monthly number of censored cars by
subtracting the number of claimed cars from the
adjusted monthly number of cars sold in 3.1.
However, there were two suspicious parts in the
monthly number of censored cars : data in the
early 1996 and a couple of data in 1998. In the lat-
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ter case, more cars than sold turned out to have
been claimed. Since this does not make any sense
we set the number of censored cars during those
periods to be 0. In the former case, there seemed
to be too many censored cars, especially in the
early period of 1996. However, it should be the
case since not many cars would have been sold
within a few months since production (Note that
the data analyst originally received warranty
claim data ordered in terms of production month).
So we need to know how long it took for a car to
be sold since production. Then the new adjusted
number of cars sold in early 1997 can be obtained.
Finally for each censored car we can get the cen—
sored life as sales date to the data collection date
and add it to the population of each critical com-
ponent in the engine.

3.3 Failure and censored lives from
the claimed cars for each
component

Sample failures and censored lives that can be
identified from the claimed carsat the component
level are as shown in <Figure 2>. Specifically fol-
lowing 4 types of data can be extracted from the
claimed cars :

a) For each claim data we get sales date to repair
or replacement date as a failure data {See (1)
of <Figure 2> for component A}.

b) If a component is replaced more than once in
the same car we get previous repair or re—
placement date to recent repair or replace-
ment date as a failure data {See (2) of <Figure
2> for component A}.

¢) For any claimed car we get last repair or re-
placement date to data collection date as a
censoring data {See (3) of <Figure 2> for com-
ponent A}.

d) In some cars some components have never
been repaired or replaced. In this case the cars
generate only censored lives for those com—

ponents. The censored lives in this case are
taken as sales date to the data collection date
{See (4) of <Figure 2> for component A}.
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<Figure 2> Claim history in one dimension for 5
cars (Components A, B, C and D)

3.4 Combination of data

Now data from censored cars in 3.2 and from
claimed cars in 3.3 are combined to make a con—
ceptual population for each component and ana-—
lyzed in the following sections; reliability analysis
at the component level in Section 4 and at the sub~
assembly and assembly levels in Section 5.

4. Analysis at the component level

Reliability analysis at the component level can
be performed parametrically and nonparametri—
cally for the data obtained in Section 3. For com—
ponent 251*# there were a total of 35,766 data
(=3,101 failure data + 32,665 censored data) from
the claimed cars. In addition, 48,216 censored
lives coming from censored cars were added to
the population for the appropriate analysis of the
component. Note that only 3.7% {=3,101/(48,216
+ 35,766)} of the data were failures. This would
be typical of the warranty data at the component
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level if we assume renewal or replacement at
each failure of the car.
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<Figure 3> Nonparametric analysis of components
251#* and 255%* in a subsystem
(Reliability and hazard rate)

Weibull and Lognormal distributions are gen-
erally applied in the parametric method. Howev-
er, in our warranty data it turned out that those
distributions were not applicable since Anderson—
Darling statistic is too large. Therefore, non-
parametric methods are applied to the data.
Minitab was used to draw the plots of reliability
and hazard rates over time. For instance, the reli-
ability and hazard plot of components 251** and
255#* in a subsystem are as shown in <Figure 3>.
Therefore, it can be said that components 251#**
and 255** are still working with probabilities of
95% and 99% even after 2.7 years (approximately
1000 days). Also it can be said that the proba-
bilities that components 251#*x and 255*x still
working will fail at the age of 2.7 years are 0.003%
and 0.001%, respectively.

Warranty cost analysis can be performed at
component level since it can be repaired or re-
placed more than once over time in a car. As in the
reliability analysis we use the nonparametric
method for the warranty cost analysis. Espe-
cially, Nelson [11] can be used to draw a pictur—
eof the mean cumulative number of failures for
each component as time goes by (see also [14]).
Then we can get the warranty cost for the compo-

nent by multiplying the mean cumulative number
of failures by the repair or replacement cost.

5. Analysis at the subsystem and
system levels

The analysis of the subsystem or system de-
pends on the nature of the data available as ex—
plained in Ansell and Phillips [1]. The data in this
case study are available at component level.
Hence we can combine all the information at com-
ponent levels to make inference on the behavior
of the subsystem. In this case study we assume
that all of the components need to be working in
order for the higher level of the system to func—
tion properly, therefore a series system.
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<Figure 4> Nonparametric hazard plot for a
subsystem with components 251*x
and 255%x

<Figure 4> shows a hazard plot for a cooling
subsystem. Note that since there are two critical
components in the subsystem, the hazard rate for
the subsystem is /#gu(t) = k(¢) + hy(2) . There—
fore, it can be said that the probability that the
cooling subsystem still working at 2.7 years will
fail at that moment is 0.004%.

Finally, by combining all the information at the
subsystem levels in engine we can identify the
behavior of a series system with instantaneous
repair : the performance of the system (engine)
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might be expressed as hy= ]Zlhi where m' is the
total number of subsystems in the system. The
hazard plot for the system is not shown in this pa-
per due to confidential reason.

So far we have been concentrating on reliability
analysis at subsystem and system levels. We can
also draw the graph of warranty cost at sub-—
system and system levels once we know the re—
pair or replacement cost of each component.

6. Summary

In this case study we were given claim history
data and asked to do reliability and warranty cost
analyses. First thing we did was to sort out un-—
necessary data that were not related to this study;
data that did not belong to a particular type of ve—
hicle and engine of interest were discarded. Then
with only relevant data for the study we identified
critical components in engine. Also for each crit-
ical component we found critical failure modes
and for each failure mode we found critical causes
of the failure. In this case study we found that
component CO; was the most critical one. We also
found that the most frequent failure mode for the
component was FM;; while the most probable
cause of the failure for the failure mode was
CF111~

For each critical component in engine we
formed a conceptual population. The population
consisted of censored data as well as failure data.
Then we could perform reliability analysis at the
component level. The analysis was done non-
parametrically since the distributional assump-
tions did not hold for the data. We could draw
graphs of reliability and hazard rate for each crit-
ical component.

The behavior of subsystem (or system) was

assessed through its hazard function %se= ,Zlhi

where #; is the hazard function for component ;
and where m is the number of components in the

subsystem (or system).
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