Buckling Analysis of Thin-Walled Laminated Composite I-Beams Including Shear Deformation

전단변형을 고려한 적층복합 I형 박벽보의 좌굴해석

  • Received : 2006.07.14
  • Accepted : 2006.09.15
  • Published : 2006.10.27

Abstract

In this paper, a shear-flexible finite element model is developed for the buckling analysis of axially loaded, thin-walled composite I-beams. Based on an orthogonal Cartesian coordinate system, the displacement fields are defined using the first-order shear-deformable beam theory. The derived element takes into account flexural shear deformation and torsional warping deformation. Three different types of beam elements, namely, the two-noded, three-noded, and four-noded beam elements, were developed to solve the governing equations. An inverse iteration with shift eigenvalue solution was used to solve the resulting linearized buckling problem. A parametric study was conducted to show the importance of shear flexibility and fiber orientation on the buckling behavior of thin-walled composite beams. A good agreement was obtained among the proposed shear-flexible model, other results available in literature, and the finite element solution.

본 연구에서는 압축력을 받는 적층복합 I형 박벽보의 좌굴해석을 위한 전단변형을 고려한 유한요소 모델을 제안한다. 직교좌표계에 근거로 변위장은 1차 전단변형을 고려한 보 이론을 사용하여 정의된다. 유도된 요소는 휨 전단변형과 ? 비틂에 의한 영향을 고려한다. 지배방정식을 풀기 위하여 본 유한요소에서는 2절점, 3절점, 4절점의 세 가지 보요소를 제안하였다. 선형 좌굴문제를 풀기 위하여 이동기법을 의한 역방향 반복법을 사용하였다. 적층복합 I형 박벽보의 좌굴거동에 전단 유연성과 파이버 방향성의 중요도를 조사하기 위하여 매개변수 해석을 수행하였다. 본 연구의 전단변형을 고려한 모델은 다른 연구자의 수치해석 결과와 유한요소해에 잘 일치하는 것을 확인하였다.

Keywords

References

  1. 백성용, 이승식 (2006) 전단변형을 고려한 I형 박벽보의 $C^0$ 유한요소, 한국강구조학회논문집, 제18권 제3호, pp.349-359
  2. 신동구, 김철영, 김재원 (2000) 압축력을 받는 적층 복합재 I-형 단면 박벽보의 좌굴해석, 대한토목학회논문집, 제 20권 I-A 호, pp.143-157
  3. Back, S. Y. and Will, K. M. (1998) A shear-flexible element with warping for thin-walled open beams, International Journal for Numerical Methods in Engineering, Vol. 43, pp.1173-1191 https://doi.org/10.1002/(SICI)1097-0207(19981215)43:7<1173::AID-NME340>3.0.CO;2-4
  4. Bakis, C. E., Bank, L. C., Brown, V.L., Cosenza, E., Davalos, J. F., Lesko, J. J., Machida, A., Rizkalla, S. H., and Triantafillou, T. C. (2002) Fiber-reinforced polymer composites for construction-state-of-the-art review, Journal of Composites for Construction, Vol. 6, No. 2, pp.73-87 https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73)
  5. Barbero, E. J., and Raftoyiannis, I. (1994). Lateral and distortional buckling of pultruded I-beams, Composite Structures, Vol. 27, No. 3, pp.261-268 https://doi.org/10.1016/0263-8223(94)90087-6
  6. Bauld, N. R. and Tzeng L. S. (1984) A Vlasov theory for fiberreinforced beams with thin-walled open cross section, International Journal of Solids and Structures, Vol. 20, No. 3, pp.277-97 https://doi.org/10.1016/0020-7683(84)90039-8
  7. Bleich, F. (1952) Buckling Strength of Metal Structures, McGraw -Hill, NY
  8. Davalos, J. F. and Qiao, P. (1997) Analytical and experimental study of lateral and distortional buckling of FRP wide‐flange beams, Journal of Composites for Construction, Vol. 1, No. 4, pp.150-159 https://doi.org/10.1061/(ASCE)1090-0268(1997)1:4(150)
  9. Gjelsvik, A. (1981) The Theory of Thin-Walled Bars, John Wiley and Sons Inc., NY
  10. Lee, J. and Kim, S. (2001) Flexural-torsional buckling of thinwalled I-section composites, Computers & Structures, Vol. 79, pp.987-995 https://doi.org/10.1016/S0045-7949(00)00195-4
  11. Lin, Z. M., Polyzois, D., and Shah, A. (1996) Stability of thin-walled pultruded structural members by the finite element method, Thin-Walled Structures, Vol. 24, pp.1-18 https://doi.org/10.1016/0263-8231(95)00034-8
  12. Ma, M., and Hughes, O. (1996) Lateral distortional buckling of monosymmetric I-beams under distributed vertical load, Thin-Walled Structures, Vol. 26, No. 2, pp.123-145 https://doi.org/10.1016/0263-8231(96)00012-2
  13. Machado, S. P. and Cortinez, V. H. (2005) Nonlinear model for stability of thin-walled composite beams with shear deformation, Thin-Walled Structures, Vol. 43, pp.1615-1645 https://doi.org/10.1016/j.tws.2005.06.008
  14. Maddur, S. S. and Chaturvedi, S. K. (2000) Laminated composite open profile sections: non-uniform torsion of I-sections, Composite Structures, Vol. 50, pp.159-169 https://doi.org/10.1016/S0263-8223(00)00093-3
  15. Mottram, J. T. (1992) Lateral‐torsional buckling of a pultruded I-beam, Composites, Vol. 32, No. 2, pp.81-92
  16. Pandey, M. D., Kabir, M. Z., and Sherbourne, A. N. (1995) Flexural‐torsional stability of thin-walled composite I-section beams, Composites Engineering., Vol. 5, No. 3, pp.321-342 https://doi.org/10.1016/0961-9526(94)00101-E
  17. Qiao, P., Zou, G.., and Davalos, J. F. (2003) Flexural‐torsional buckling of fiber‐reinforced plastic composite cantilever I-beams, Composite Structures, Vol. 60, pp.205-217 https://doi.org/10.1016/S0263-8223(02)00304-5
  18. Reddy, J. N. (1997) Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press
  19. Roberts, T. M., and Jhita, P. S. (1983) Lateral local and distortional buckling of I-beams, Thin-Walled Structures, Vol. 1, No. 4, pp.289-308 https://doi.org/10.1016/0263-8231(83)90011-3
  20. Vlasov, V. Z. (1961) Thin-Walled Elastic Beams, Israel Program for Scientific Translations, Jerusalem, Israel
  21. Wu, X. X. and Sun, C. T. (1992) Simplified theory for composite thin-walled beams, AIAA J., Vol. 30, No. 12. pp.2945-2951 https://doi.org/10.2514/3.11641