Thermal and Electrical Behaviors of Polyethylene Oxide/Polyaniline Fibers Prepared by Electrospinning Method

전기방사법에 의해 제조된 폴리에틸렌옥사이드/폴리아닐린 섬유의 열적 및 전기적 거동

  • Kim, Seok (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Cho, Mi-Hwa (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Park, Soo-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 김석 (한국화학연구원 화학소재연구부) ;
  • 조미화 (한국화학연구원 화학소재연구부) ;
  • 박수진 (한국화학연구원 화학소재연구부)
  • Received : 2005.02.22
  • Accepted : 2005.12.30
  • Published : 2006.02.10

Abstract

In this study, PEO blend fibers mixed with polyaniline (PANI)/10-camphor sulfonic acid (CSA) and PANI/dodecylbenzene sulfonic acid (DBSA) were electro spun to investigate the influence of PANI content. CSA and DBSA were used as a functionalized doping acid having a bulky volume. PANI/PEO blend solution was prepared by dissolving PEO and PANI doped with CSA or DBSA. The thermal properties were measured by thermogravimetric analyzer (TGA). As a result, with increasing of the PANI content in PANI/CSA and PANI/DBSA, although initial decomposition temperature (IDT) was decreased, thermal stability was increased due to the increase of $A^*{\cdot}K^*$ and integral procedural decomposition temperature (IPDT). The electrical conductivities measured by the 4-probe method. The electric conductivity was increased with increasing of PANI content in PANI/CSA and PANI/DBSA. However, electrical conductivity did not change significantly beyond 30% content of PANI. From CV results, PANI/CSA showed the better defined peak shpae and higher peak current density compared to PANI/DBSA. This was probably related to the slightly higher electrical conductivity or better morphology for easy charge transfer in the case of PANI/CSA.

본 연구에서는 폴리아닐린(PANI)을 제조하여 큰 분자량의 유기산인 10-camphor sulfonic acid (CSA) 또는 dodecylbenzene sulfonic acid (DBSA)로 도핑시키고, polyethylene oxide (PEO)와 함께 블렌딩하여 전기방사 용액을 제조하였다. 제조된 용액을 전기방사하여 섬유형태로 만든 후, TGA와 전기화학 장치(cyclic voltammetry; CV)로 열적, 전기적 성질을 CSA 또는 DBSA로 도핑된 PANI의 함량에 따라 비교, 분석하였다. 본 실험 결과, PANI-CSA와 PANI-DBSA의 함량이 증가함에 따라 열분해 개시온도는 감소하지만 열안정성 지수와 적분 열분해 진행온도가 증가하는 것으로 보아 열안정성은 증가하는 것으로 판단된다. 또한, 전기전도도는 PANI-CSA와 PANI-DBSA의 함량이 증가함에 따라 증가하였으나 30% 이상이 되면 전도도가 일정해지는 것으로 나타났다. 순환전류젼압 곡선 결과, PANI/CSA는 PANI-DBSA 보다 피크가 좀 더 명확해지며, 전류밀도가 크게 나타났다. 이는 PANI/CSA가 약간 더 높은 전기전도도와 전하가 이동하기 쉬운 모폴로지를 가지고 있기 때문인 것으로 판단된다.

Keywords

References

  1. H. Shirakawa, E. J. Louis, A. G. Macdiarmid, and A. J. Hoeger, J. Chem. Soc. Commun., 19, 578 (1977)
  2. S. Y. Oh, K. Akagi, and H. Shirakawa, Synth. Met., 32, 245 (1989) https://doi.org/10.1016/0379-6779(89)90847-3
  3. P. M. Grant and I. P. Batra, Synth. Met., 1, 193 (1980) https://doi.org/10.1016/0379-6779(80)90010-7
  4. K. Keiji Kanazawa, A. F. Diaz, W. D. Gill, P. M. Grant, and G. B. Kwak, Synth. Met., 1, 329 (1980) https://doi.org/10.1016/0379-6779(80)90022-3
  5. K. Kaneto, K. Yoshino, and Y. Inuishi, Solid State Commun., 46 389 (1983) https://doi.org/10.1016/0038-1098(83)90454-4
  6. J. Wang, C. O. Too, D. Zhou, and G. G. Wallace., J. Power Sources, 140, 162 (2005) https://doi.org/10.1016/j.jpowsour.2004.08.040
  7. S. Letaief, P. Aranda, and E. Hitzky, Appl. Clay Sci., 28, 183 (2005) https://doi.org/10.1016/j.clay.2004.02.008
  8. J. Wagner, J. Pielichowski, A. Hinsch, K. Pielichowski, D. Bogdal, M. Pajda, S. S. Kurek, and A. Burczyk, Synth. Met., 146, 159 (2004) https://doi.org/10.1016/j.synthmet.2004.06.019
  9. H. P. Singh and S. S. Sekhon, Electrochim. Acta., 50, 618 (2004)
  10. H. Nakano, Y. Tachibana, and S. Kuwabata, Electrochim. Acta., 50, 745 (2004) https://doi.org/10.1016/j.electacta.2004.03.059
  11. L. H. Dao, M. Leclerc, J. Guay, and J. W. Chevalier, Synth. Met., 29, 377 (1989)
  12. A. R. Hopkins, R. A. Lipeles, and W. H. Kao, Thin Solid Films, 447, 474 (2004) https://doi.org/10.1016/j.tsf.2003.07.010
  13. A. Drelinkiewicz, J. Stejskal, A. Waksmundzka, and J. W. Sobczak, Synth. Met., 140, 233 (2004) https://doi.org/10.1016/S0379-6779(03)00368-0
  14. C. P. Chwang, C. D. Liu, S. W. Huang, D. Y. Chao, and S. N. Lee, Synth. Met., 142, 272 (2004)
  15. S. Y. Oh, B. K. Oh, J. W. Choi, H. S. Kim, H. W. Rhee, and W. H. Lee, J. Korean Ind. Eng. Chem., 8, 172 (1997)
  16. E. M. Genies and C. Tsintavis, J. Appl. Electrochem., 195, 109 (1985)
  17. G. Gustafsson, Y. Cao, G. M. Trevedi, F. Klavetter, N. Colaneri, and A. J. Heeger, Nature, 357, 447 (1992)
  18. J. E. Park, S. G. Park, A. Koukitu, O. Hatozaki, and N. Oyama, Synth. Met., 140, 121 (2004) https://doi.org/10.1016/j.synthmet.2003.04.001
  19. J. H. Hong and K. S. Jang, J. Korean Ind. Eng. Chem., 15, 329 (2004)
  20. J. Li, K. Fang, H. Qiu, S. Li, W. Mao, and Q. Wu, Synth. Met., 145, 191 (2004) https://doi.org/10.1016/j.synthmet.2004.05.014
  21. N. Ballav, J. Mater. Sci. Lett., 58, 3257 (2004)
  22. L. Shi, Y. Xiao, and I. Willner, J. Appl. Electrochem., 6, 1057 (2004)
  23. J. H. Hong, J. Korean Ind. Eng. Chem., 15, 417 (2004)
  24. A. G. Macdiarmid and A. J. Epstein, Synth. Met., 69, 85 (1994) https://doi.org/10.1016/0379-6779(94)02374-8
  25. J. Prokes and J. Stejskal, Polytn. Degrad. Stebil., 86, 187 (2004) https://doi.org/10.1016/j.polymdegradstab.2004.04.012
  26. P. S. Smertenko, O. P. Dimitriev, S. Schrader, and L. Brehmer, Synth. Met., 146, 187 (2004) https://doi.org/10.1016/j.synthmet.2004.07.001
  27. L. Zhang and S. Dong, J. Electroanal. Chem., 568, 189 (2004) https://doi.org/10.1016/j.jelechem.2004.01.022
  28. S. J. Park, F. L. Jin, and J. R. Lee, Mater. Sci. Eng. A, 374, 109 (2004) https://doi.org/10.1016/j.msea.2004.01.002
  29. S. J. Park, H. Y. Lee, M. J. Han, and S. K. Hong, J. Colloid Interface Sci., 270, 288 (2004) https://doi.org/10.1016/S0021-9797(03)00757-4
  30. C. D. Doyle, Anal. Chem., 33, 77 (1961) https://doi.org/10.1021/ac60169a022
  31. K. S. Yu, M. S. Lee, J. H. Kim, K. S. Yang, W. J. Lee, Appl. Chem., 5, 28 (2001)