Evaluation of the Bending Moment of FRP Reinforced Concrete Using Artificial Neural Network

인공신경망을 이용한 FRP 보강 콘크리트 보의 휨모멘트 평가

  • Received : 2006.03.10
  • Published : 2006.09.30

Abstract

In this study, Multi-Layer Perceptron(MLP) among models of Artificial Neural Network(ANN) is used for the development of a model that evaluates the bending capacities of reinforced concrete beams strengthened by FRP Rebar. And the data of the existing researches are used for materials of ANN model. As the independent variables of input layer, main components of bending capacities, width, effective depth, compressive strength, reinforcing ratio of FRP, balanced steel ratio of FRP are used. And the moment performance measured in the experiment is used as the dependent variable of output layer. The developed model of ANN could be applied by GFRP, CFRP and AFRP Rebar and the model is verified by using the documents of other previous researchers. As the result of the ANN model presumption, comparatively precise presumption values are achieved to presume its bending capacities at the model of ANN(0.05), while observing remarkable errors in the model of ANN(0.1). From the verification of the ANN model, it is identified that the presumption values comparatively correspond to the given data ones of the experiment. In addition, from the Sensitivity Analysis of evaluation variables of bending performance, effective depth has the highest influence, followed by steel ratio of FRP, balanced steel ratio, compressive strength and width in order.

본 연구에서는 FRP Rebar로 보강된 철근콘크리트 보의 휨성능을 평가할 수 있는 모형을 개발하기 위하여 인공신경망 중 다층인식자 모형을 사용하였다. 인공신경망 모형에 사용될 학습자료들은 기존 연구자료들의 데이터를 이용하였다. 입력층의 독립변수는 휨성능에 주요 요소인 폭, 유효깊이, 압축강도, FRP 보강비, FRP 균형철근비을 사용하였다. 출력층 종속변수는 실험에서 측정된 모멘트 성능을 사용하였다. 개발된 인공신경망 모형은 GFRP, CFRP, AFRP Rebar 적용이 모두 가능하며, 모형의 검증은 다른 선행 연구자들이 수행한 자료를 이용하였다. 인공신경망 모형 추정결과 ANN(0.05) 모형의 경우에 비교적 정확한 휨성능 추정값을 나타낸 반면, ANN(0.1) 모형에서는 다소 오차가 발생하였다. 인공신경망 모형의 검증결과 주어진 실험 데이터 값과 비교적 일치하고 있음을 확인할 수 있었다. 또한, 휨성능 평가 변수에 대한 민감도 분석결과 유효깊이의 영향이 가장 크고 FRP 철근비, FRP 균형철근비, 압축강도, 폭으로 분석되었다.

Keywords

References

  1. 석정우, 김장용, 김경모, "FRP 보강재의 역학적 특성 및 현장시험 결과분석", KGS National Conference Committee of Slop Stability, 2001.9, pp32-42.
  2. 이상호, 안상호, "FRP 봉을 주근으로 사용한 콘크리트 보 부재의 휨 거동", 대한건축학회 논문집, 제21권, 1호, 2005.1, pp67-74.
  3. 김대수,"신경망 이론과 응용" 하이테크 정보, 1999, pp.91-116.
  4. 오성권," 프로그래밍에 의한 컴퓨터 지능" 내하출판사, 2002, pp225-253.
  5. Alsayed SH, "Flexural behavior of concrete beams reinforced with GFRP bars", Cem Concr Compos, 20(1), 1998, pp1-11. https://doi.org/10.1016/S0958-9465(97)00061-9
  6. Brown VL., Bartholomew CL., "FRP reinforcing bars in reinforced concrete members", ACI Mater J,90(1), 1993, pp34-9.
  7. Yost JR., Goodspeed CH., Schmeckpeper ER., "Flexural preforemance of concrete beams reinforced with FRP grids", J. Compos & Constr, 5(1), 2001, pp.18-25. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:1(18)
  8. Masmoudi R., Theriault M., Benmokrane B., "Flexural behavior of concrete beams reinforced with deformed fiber reinforced plastic reinforcing rods", ACI Struct J, 95(6), 1998, pp665-676.
  9. Grace NF., Soliman AK., Abdel-Sayed G., Saleh KR., "Behavior and ductility of simple and continuous FRP reinforced beams", J compos Constr,2(4), 1998, pp.186-194. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(186)
  10. Theriault M., Benmokrane B., "Effects of FRP reinforcement ratio and concrete strength on flexural behavior of concrete beams", J Compos Constr, 2(1), 1998, pp7-16. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:1(7)
  11. Toutanji HA., Saafi M., "Flexural behavior of concrete beams reinforced with glass fiber reinforced polymer (GFRP) bars", ACI Struct J, 97(5), 2000, pp712-9.
  12. Pecce M., Manfredi G., Cosenza E., Experimental response and code models of GFRP RC beams in bending", J Compos Constr, 97(5), 2000, pp182-190.
  13. Almusallam TH., AL-Salloum YA., Alsayed SH., Amjad MA., "Behavior of concrete beams doubly reinforced by FRP bars", In: Proceeding of the third international symposium on non-metallic(FRP) reinforcement for concrete structures (FRPRCS-3), Japan, Vol. 2, 1997, pp471-478.
  14. Duranovic N., Pilakoutas K., Waldron P., "Tests on concrete beams reinforced with glass fiber reinforced plastic bars", In: Proceeding of the third international symposium on non-metallic(FRP) reinforcement for concrete structures (FRPRCS-3), Japan, Vol. 2, 1997, pp479-486.
  15. Hunter, A., Kennedy, L., Henry, J. and Ferguson, R.I. "Application of Neural Networks and Sensitivity Analysis to improved prediction of Trauma Survival" Computer Methods and Algorithms in Biomedicine 62, 2000, pp.11-19. https://doi.org/10.1016/S0169-2607(99)00046-2
  16. A. F. Ashour, "Flexural and shear capacities of concrete beams reinforced with GFRP bars", Construction and Building Materials, 2005, pp.1-10.
  17. Benmokrane B., Challal O., Masmoudi R., "Flexural response of concrete beams reinforced with FRP reinforcing bars", ACI Struct J, 91(2), 1996, pp.46-55.