Variation of Flow Rates in Heterogeneous Microchannel Systems

비균일계 마이크로채널에서의 유량 변화 특성

  • Kim, Jin-Yong (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Hyo-Song (Department of Chemical Engineering, Chungnam National University) ;
  • Yu, Jae-Keun (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, Ki-Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Rhee, Young Woo (Department of Chemical Engineering, Chungnam National University)
  • Received : 2005.07.18
  • Accepted : 2005.12.23
  • Published : 2006.02.10

Abstract

This study investigated the variation of flow rates in microchannels that consisted of polydimethyl siloxane (PDMS) and glass using various external voltages. Three different microchannel widths and two different depths. PDMS and negative photoresist (SU-8) were used to make the microchannels by the soft lithographic method. For each depth of microchannel ($50{\mu}m$ and $100{\mu}m$), three different widths ($100{\mu}m$, $200{\mu}m$ and $300{\mu}m$) were made. In each case, several different external voltages were applied (0.3 kV, 0.35 kV, 0.4 kV and 0.45 kV) to examine the flow rates. Our results indicated that flow rate increased with an increase of the external voltage at the same microchannel width. This was because the electrical field was increased as the external voltage increased. For the same external voltage, the flow rate increased as the microchannel's width increased. These results showed that the resistance in the microchannel decreased as the microchannel's width increased. Also, to investigate the effect of microchannel's depth and width, the cross-sectional area of the microchannel was increased to the double in area. As a result, the effect of the microchannel's depth was higher at a low external voltage, and the effect of the microchannel's width was higher at a high external voltage.

본 연구에서는 polydimethylsiloxane (PDMS)와 glass로 이루어진 마이크로채널의 너비와 깊이 및 외부전압에 따른 특성을 알아보기 위하여 각각의 마이크로채널에서의 유량 변화를 조사하였다. PDMS와 SU-8 감광제를 사용하는 soft lithographic method 기술을 사용하여 마이크로채널을 만들었다. 채널의 깊이 $50{\mu}m$$100{\mu}m$에 대하여, 채널의 너비를 $100{\mu}m$, $200{\mu}m$, $300{\mu}m$로 하여 제작하였으며, 각각의 마이크로채널에 0.3 kV, 0.35 kV, 0.4 kV 그리고 0.45 kV의 외부전압을 걸어 유량 변화를 측정하였다. 실험 결과, 동일한 너비를 갖는 마이크로채널에서는 외부전압이 증가함에 따라 유량이 증가하였다. 이는 외부전압이 증가함에 따라 전기장이 증가하기 때문이다. 동일한 외부전압에서 마이크로채널의 너비가 증가할수록 유량이 증가하는 경향이 나타났고, 이는 채널 너비의 증가가 내부의 저항을 감소시키는 효과를 가져온 것으로 사료된다. 또한, 동일하게 단면적을 두 배로 증가시켜 깊이와 너비의 영향을 조사한 결과, 저 전압에서는 깊이의 영향이 크게 나타났으며 고 전압에서는 너비의 영향이 크게 나타났다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. M. J. Madou, Fundamentals in Microfabrication, CRC press, Boca Raton (1997)
  2. A. Manz and H. Becker, Microsystem Technology in Chemistry and Life Science, Springer (1998)
  3. Q. Kou, I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, and Y. Chen, Microelectronic Engineering, 73, 876 (2004) https://doi.org/10.1016/S0167-9317(04)00237-0
  4. T. Vilkner, D. Janasek, and A. Manz, Anal. Chem., 76, 3373 (2004) https://doi.org/10.1021/ac040063q
  5. Y. Chen and A. Pepin, Electrophoresis, 22, 187 (2001) https://doi.org/10.1002/1522-2683(200101)22:2<187::AID-ELPS187>3.0.CO;2-0
  6. F. Xue, F. Fore, Y. M. Dunayevskiy, and P. M. Zavaracky, Anal. Chem., 69, 426 (1997) https://doi.org/10.1021/ac9607119
  7. M. U. Kopp, A. J. DeMello, and A. Manz, Science, 280, 1046 (1998) https://doi.org/10.1126/science.280.5366.1046
  8. G. J. M. Bruin, Electrophoresis, 21, 3931 (2000) https://doi.org/10.1002/1522-2683(200012)21:18<3931::AID-ELPS3931>3.0.CO;2-M
  9. H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, Polymer, 41, 6851 (2000) https://doi.org/10.1016/S0032-3861(00)00039-2
  10. Y. Liu, J. C. Fanguy, J. M. Ledsoe, and C. S. Henry, Anal. Chem., 72, 5939 (2000) https://doi.org/10.1021/ac000932l
  11. X. Ren, M. Bachman, C. Sims, G. P. Li, and N. Allbritton, J. Chromatography. B, 762, 117 (2001) https://doi.org/10.1016/S0378-4347(01)00327-9
  12. Y. Berdichevsky, J. Khandurina, A. Guttman, and Y. H. Lo, Sensors and Actuators B, 97, 402 (2004) https://doi.org/10.1016/j.snb.2003.09.022
  13. T. Murakami, S. Kuroda, and Z. Osawa, J. Colloid Interface Sci., 202, 37 (1998) https://doi.org/10.1006/jcis.1997.5386
  14. S. L. R. Barker, D. Ross, M. J. Tadov, M. Gaitan, and L. E. Locascio, Anal. Chem., 72, 5925 (2000) https://doi.org/10.1021/ac0008690
  15. S. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li, and N. Allbritton, Anal. Chem., 74, 4117 (2002) https://doi.org/10.1021/ac025700w
  16. M. N. Kozicki, P. Maroufkhani, and M. Mitkova, Super lattices and Microstructures, 34, 467 (2003) https://doi.org/10.1016/j.spmi.2004.03.043
  17. R. M. McCormick, Anal. Chem., 60, 2322 (1988) https://doi.org/10.1021/ac00172a003
  18. M. A. Hayes and A. G. Ewing, Anal. Chem., 64, 512 (1992) https://doi.org/10.1021/ac00029a012
  19. D. Belder, K. Elke, and H. Husmann, J. Chromatography. A, 868, 63 (2000) https://doi.org/10.1016/S0021-9673(99)01165-6
  20. Y. Joo, K. Dieu, and C. J. Kim, Proc. MEMS'95, 362 (1995)
  21. J. J. Rebecca, M. F. Tamara, G. Reza, A. S. Martin, and F. J. Klavs, Journal of Micromechanics and Microengineering, 11, 263 (2001) https://doi.org/10.1088/0960-1317/11/3/316
  22. N. A. Polson and M. A. Hayes, Anal. Chem., 72, 1088 (2000) https://doi.org/10.1021/ac9912698
  23. D. Sinton, C. E. Canseco, L. Ren, and D. Li, J. Colloid Interface Sci., 254, 184 (2002) https://doi.org/10.1006/jcis.2002.8584
  24. C. D. Meinhart, S. T. Wereley, and J. G. Sntiago, Exp. in Fluids, 27, 414 (1999) https://doi.org/10.1007/s003480050366
  25. J. Y. Kim, H. S. Lee, J. S. Kim, and Y. W. Rhee, J. Korean Ind. Eng. Chem., 16, 238 (2005)