The Study on Bunsen Reaction Process for Iodine-Sulfur Thermochemical Hydrogen Production

요오드-황 열화학 수소 제조를 위한 분젠 반응 공정 연구

  • Kang, Young-Han (Department of Fine Chemical Engineering and Chemistry, BK21-E2 M, Chungnam National University) ;
  • Ryu, Jae-Chun (Department of Fine Chemical Engineering and Chemistry, BK21-E2 M, Chungnam National University) ;
  • Park, Chu-Sik (Korea Institute of Energy Research) ;
  • Hwang, Gab-Jin (Korea Institute of Energy Research) ;
  • Lee, Sang-Ho (Korea Institute of Energy Research) ;
  • Bae, Ki-Kwang (Korea Institute of Energy Research) ;
  • Kim, Young-Ho (Department of Fine Chemical Engineering and Chemistry, BK21-E2 M, Chungnam National University)
  • 강영한 (충남대학교 공과대학 정밀공업화학과, BK21-에너지환경소재사업단) ;
  • 류재춘 (충남대학교 공과대학 정밀공업화학과, BK21-에너지환경소재사업단) ;
  • 박주식 (한국에너지기술연구원) ;
  • 황갑진 (한국에너지기술연구원) ;
  • 이상호 (한국에너지기술연구원) ;
  • 배기광 (한국에너지기술연구원) ;
  • 김영호 (충남대학교 공과대학 정밀공업화학과, BK21-에너지환경소재사업단)
  • Received : 2006.07.13
  • Accepted : 2006.07.20
  • Published : 2006.08.31

Abstract

For highly efficient operation of a Bunsen process section in an iodine-sulfur thermochemical hydrogen production cycle using nuclear heat, the process characteristics of $H_2SO_4-HI-H_2-O-I_2$ mixture system for separating into two liquid phases ($H_2SO_4$-rich phase and $HI_x$-rich phase) and the distribution of $H_2O$ to each phase were investigated.The experiments for process variables were carried out in the temperature range, from 298 to 353 K, and in the $H_2SO_4/HI/H_2O/I_2$ molar ratio of 1/2/14~20/0.5~8.0. As the results, for the $SO_2-I_2-H_2O$ Bunsen reaction system, the ranges between the starting point and the saturation point for two liquid phases separation were determined by calculation. The best result for the minimization of impurities (HI and $I_2$ in $H_2SO_4$ phase and $H_2SO_4$ in $HI_x$ phase) in each phase was obtained in an optimum condition with the highest temperature of 353 K and the highest $I_2$ molar composition. In this condition, the $HI/H_2SO_4$ molar ratio in the $H_2SO_4$-rich phase and the $H_2SO_4/HI_x$ molar ratio in the $HI_x$-rich phase were 0.024 and 0.028, respectively. For the distribution of $H_2O$ to each phase, it is appeared that the affinity between $HI_x$ and $H_2O$ was more superior to that between $H_2SO_4$ and $H_2O$. The affinity between $HI_x$ and $H_2O$ was decreased with increasing temperature but increased with increasing $I_2$ molar composition.

원자력 열을 이용한 요오드-황 열화학 수소 제조 사이클에서 분젠 공정 부분의 고효율 운전을 목적으로 2 액상(황산 상과 $HI_x$ 상)으로의 분리 및 $H_2O$의 분배를 위한 $H_2SO_4-HI-H_2-O-I_2$ 혼합 계의 공정 특성을 연구하였다. 공정 변수 실험은 298~353 K의 온도 범위와 $H_2SO_4/HI/H_2O/I_2=1/2/14{\sim}20/0.5{\sim}8.0$의 몰 조성 범위에서 수행했다. 결과로서, $SO_2-I_2-H_2O$ 분젠 반응계를 위하여 계산에 의해 2 액상으로 분리되는 분리점 및 포화점의 사이의 범위를 결정하였다. 각상내 불순물들(황산 상내 HI 및 $I_2$ 그리고 $HI_x$ 상내 $H_2SO_4$)이 최소화되는 최적의 결과는 가장 높은 온도인 353 K와 가장 높은 $I_2$ 몰 농도에서 얻을 수 있었다. 이 조건에서 황산 상을 위한 $HI/H_2SO_4$$HI_x$ 상을 위한 $H_2SO_4/HI_x$ 몰 비율은 각각 0.024와 0.028였다. 각 상으로 $H_2O$의 분배를 위하여 $HI_x$$H_2O$ 사이의 친화력이 $H_2SO_4$$H_2O$ 사이의 친화력보다 우세한 것으로 나타났으며, $HI_x$$H_2O$ 사이의 친화력은 온도 증가에 따라 감소하고 $I_2$ 몰 농도에 따라 증가했다.

Keywords

Acknowledgement

Supported by : 과학기술부

References

  1. Funk, J. E. and Reinstrom, R. M., 'Energy Requirements in the Production of Hydrogen from Water,' Ind. Eng. Chem. Proc. Des. Develop., 5(3), 336-342(1966) https://doi.org/10.1021/i260019a025
  2. Kubo, S., Nakajima, H., Kasahara, S., Higashi, S., Masaki, T., Abe, H. and Onuki, K., 'A Demonstration Study on a Closedcycle Hydrogen Production by the Thermochemical Water-splitting Iodine-sulfur Process,' Nuclear Engineering and Design, 233, 347-354(2004) https://doi.org/10.1016/j.nucengdes.2004.08.025
  3. Norman, J. H., Besenbruch, G. E., Brown, L. C., O'Keefe, D. R. and Allen, C. L., 'Thermochemical Water-splitting Cycle: Benchscale Investigations and Process Engineering,' GA-A 16713(1982)
  4. Onuki, K., Nakajima, H., Ioka, I., Futakawa, M. and Shimizu, S., 'IS Process for Thermochemical Hydrogen Production,' JAERIReview 94-006(1994)
  5. Sakurai, M., Nakajima, H., Onuki, K., Ikenoya, K. and Shimizu, S., 'Preliminary Process Analysis for the Closed Cycle Operation of the Iodine-sulfur Thermochemical Hydrogen Production Process,' Int. J. Hydrogen Energy, 24, 603-612(1999) https://doi.org/10.1016/S0360-3199(98)00119-0
  6. Sakurai, M., Nakajima, H., Onuki, K. and Shimizu, S., 'Investigation of 2 Liquid Phase Separation Characteristics on the Iodinesulfur Thermochemical Hydrogen Production Process,' Int. J. Hydrogen Energy, 25, 605-611(2000) https://doi.org/10.1016/S0360-3199(99)00078-6
  7. Sakurai, M., Nakajima, H., Amir, R., Onuki, K. and Shimizu, S., 'Experimental Study on Side-reaction Occurrence Condition in the Iodine-sulfur Thermochemical Hydrogen Production,' Int. J. Hydrogen Energy, 25, 613-619(2000) https://doi.org/10.1016/S0360-3199(99)00074-9
  8. Vitart, X., Borgard, J. M., Goldstein, S. and Colette, S., 'Investigation of the I-S Cycle for Massive Hydrogen Production,' Second Information Exchange Meeting for Nuclear Production of Hydrogen, October, Argonne, Illinois, 99-109(2003)
  9. Nomura, M., Fujiwara, S., Ikenoya, K., Kasahara, S., Nakajima, H., Kubo, S., Hwang, G. J., Choi, H. S. and Onuki, K., 'Application of an Electrochemical Membrane Reactor to the Thermochemical Water Splitting IS Process for Hydrogen Production,' J. Membrane Sci., 240, 221-226(2004) https://doi.org/10.1016/j.memsci.2004.03.046
  10. Kubo, S., Kasahara, S., Okuda, H., Terada, A., Tanaka, N., Inaba, Y., Ohashi, H., Inagaki, Y., Onuki, K. and Hino, R., 'A Pilot Test Plan of the Thermochemical Water-splitting Iodine-sulfur Process,' Nuclear Engineering and Design, 233, 355-362(2004) https://doi.org/10.1016/j.nucengdes.2004.08.018
  11. Vitart, X., Duigou, A. L. and Carles, P., 'Hydrogen Production Using the Sulfur-iodine Cycle Coupled to a VHTR: an Overview,' Energy Conversion and Management, 47, 2740-2747(2006) https://doi.org/10.1016/j.enconman.2006.02.010
  12. Kasahara, S., Hwang, G. J., Nakajima, H., Choi, H. S., Onuki, K. and Nomura, M., 'Effects of the Process Parameters of the IS Process on Total Thermal Efficiency to Produce Hydrogen from Water,' J. Chem. Eng. Japan, 36(7), 887-899(2003) https://doi.org/10.1252/jcej.36.887
  13. Kasahara, S., Kubo, S., Onuki, K. and Nomura, M., 'Thermal Efficiency Evaluation of HI Synthesis/concentration Procedure in the Thermochemical Water Splitting IS Process,' Int. J. Hydrogen Energy, 29, 579-587(2004) https://doi.org/10.1016/j.ijhydene.2003.08.005
  14. Goldstein, S., Borgard, J. M. and Vitart, X., 'Upper Bound and Best Estimate of the Efficiency of the Iodine Sulfur Cycle,' Int. J. Hydrogen Energy, 30, 619-626(2005) https://doi.org/10.1016/j.ijhydene.2004.06.005