AVO Analysis on Gas Hydrates in the Continental Margin off the South shetland Islands, Antarctica

남극 남쉐틀랜드 군도 대륙주변부의 가스수화물 AVO 반응분석

  • 구경모 (한국해양연구원 부설 극지연구소/경북대학교) ;
  • 홍종국 (한국해양연구원 부설 극지연구소) ;
  • 진영근 (한국해양연구원 부설 극지연구소) ;
  • 박민규 (한국해양연구원 부설 극지연구소) ;
  • 남상헌 (한국해양연구원 부설 극지연구소) ;
  • 이정모 (경북대학교)
  • Published : 20060000

Abstract

Geophysical survey has been conducted on the continental margin off the South Shetland Islands aboard R/V Onnuri of KORDI in 1992/1993. About 800-line km of 96-channel reflection data have been acquired. On the seismic section, BSR with strong reflectivity and negative polarity has been found at 700 ms below the sea bottom. BSR is considered as the base of gas hydrates and AVO analysis was performed to study physical properties along BSR. True amplitude recovery and surface consistence amplitude were applied to seismic data and angle gathers were obtained. AVO gradient and AVO intercept are calculated on every CDP gather. Section of AVO intercept show strong reflectivity and negative polarity on BSRs and stronger continuity of BSR than stacked section. Cross plot of P-G indicates that the lower layer below BSR is filled with free gas.

1993년 남극 하계 기간 동안 남쉐틀랜드 대륙주변부에서 한국해양연구원의 종합연구선 온누리호를 이용하여 탄성파 탐사를 실시하였으며 약 800 km의 탄성파자료를 획득하였다. 탄성파 자료에서 음의 반사계수를 보이며 상대적으로 강한 진폭을 갖는 BSR이 해저면 700 ms에서 발견되었으며 이는 가스수화물의 기저면으로 간주된다. BSR 경계면에서의 물성을 밝히기 위하여 AVO 분석을 수행하였다. 탄성파 자료에 대하여 실진폭 회수, surface consistence amplitude 보정, 입사각 변환 등을 수행하고, 각각의 CDP 자료에 대하여 AVO 절편 및 AVO 기울기를 구하였다. AVO 절편의 단면도는 BSR 경계면에서 극성이 음이고 강한 반사도를 보이며 중합단면도보다 BSR 경계면의 연속성이 뚜렷하였다. AVO 분석자료를 P-G 도면으로 표시한 결과, BSR이 뚜렷한 곳의 하부에는 가스로 채워졌음을 시사한다.

Keywords

References

  1. 진영근, 남상헌, 김예동, 김규중, 이주한, 2003, 가스수화물 BSR을 이용한 남극반도 남쉐틀랜드 대륙주변부의 지열류량 변화, Ocean and Polar Research, 25, 201-211 https://doi.org/10.4217/OPR.2003.25.2.201
  2. Aki, K. and Richards, P. G., 1980, Quantitative Seismology, W. H. Freedman and Co., 700p
  3. Andreassen, K., Hart, P., and Grantz, A., 1995, Seismic studies of a bottom simulating reflection related to gas hydrate beneath the continental margin of the Beaufort Sea, J. Geophys. Res., 100, 12, 659-12, 673 https://doi.org/10.1029/94JB02465
  4. Carcione, J.M. and Tinivella, U., 2000, Bottom-simulating reflectors: Seismic velocities and AVO effects, Geophysics, 64, 54-67
  5. Castagna, J.P., and Backus, M.M., 1993, Offset dependent reflectivity - Theory and practices of AVO analysis, SEG publication, 348p
  6. Castagna, J.P., and Swan, H.W., 1997, Principles of AVO crossplotting, The Leading Edge, 337-342
  7. Dix, C.H., 1955, Seismic velocities from surface measurements: Geophysics, 20, 68-86 https://doi.org/10.1190/1.1438126
  8. Hyndman, R.D. and Spence, G.D., 1992, A seismic study of methane hydrate marine bottom simulating reflectors, J. Geophys. Res., 97, 6683-6698 https://doi.org/10.1029/92JB00234
  9. Jeffers, J.D., and Anderson, J.B., 1990, Sequence stratigraphy of the Bransfield Basin, Antarctica, implication for tectonic history and hydrocarbon potential. in St John, B., ed. Antarctica as an exploration frontier-hydrocarbon potential, geology and hazards, Stud. in Geol., Am. Assoc. Pet. Geol., 31, 13-29
  10. Jin, Y.K., Lee, M.W., Kim, Y, Nam, S.H., and Kim, K.J., 2003, Gas hydrate volume estimations on the South Shetland continental margin, Antarctic Peninsula, Antarc. Sci., 15, 271-282 https://doi.org/10.1017/S0954102003001275
  11. Kvenvolden, K.A., 1988, Methane hydrate-A major reservoir of carbon in the shallow geosphere?, Chem. Geol., 71, 41-51 https://doi.org/10.1016/0009-2541(88)90104-0
  12. Kvenvolden, K.A., 1993, Gas hydrates-geological perspective and global change, Rev. Geophys., 31, 173-187 https://doi.org/10.1029/93RG00268
  13. Kvenvolden, K.A. and Barnard, L.A., 1983, Hydrates of Natural Gas in Continental Margins. In: J. R. Watkins and C. L. Drake(Editors), Studies of Continental Margin Geology. AAPG Mem., 34, 631-640
  14. Livermore, R., Balanya, J. C., Maldonado, A., Martinez, J.R., Fernandez, J.R., Baldeano, C.S., Zaldivar, J.G., Jabaloy, A., Barnolas, A., Sornoza, L., Molina, J.H., Surinach, E., and Viseras, C., 2000, Autopsy on a dead spreading center: The Phoenix Ridge, Drake Passage, Antarctica, Geology, 28, 607-610 https://doi.org/10.1130/0091-7613(2000)28<607:AOADSC>2.0.CO;2
  15. Lodolo, E., Camerlenghi, A., and Brancolini. G., 1993, A bottom simulating reflection on the South Shetland Margin, Antarctic Peninsula, Antarctic Sciences, 5, 207-210
  16. MacDonald, G.T, 1990, The future of methane as an energy resource, Ann. Rev. Energy, 15, 53-83 https://doi.org/10.1146/annurev.eg.15.110190.000413
  17. Miller, J.J., Lee, M.W, and vonHuene, R., 1991, An analysis of a seismic reflection from the base of a gas hydrate zone, offshore Peru, Am. Assoc. Pet. Geol. Bull., 75, 910-924
  18. Ostrander, W.J., 1984, Plane-wave reflection coefficients for gas sands at non-normal angles of incidence, Geophysics, 49, 1637-1648 https://doi.org/10.1190/1.1441571
  19. Pankhurst, R.J., 1982, Rb-Sr geochronogy of Graham Land, Antarctica, J. Geol. Soc., 139, 701-711 https://doi.org/10.1144/gsjgs.139.6.0701
  20. Rutherford, S.R. and Williams, R.H., 1989, Amplitude-versus-offst variations in gas sands, Geophysics, 54, 680-688 https://doi.org/10.1190/1.1442696
  21. Shipley, T.H., Houston, M.H., Buffler, R.T, Shaub, F.J., McMillen, K.J., Ladd, J.W, and Worze, J.L., 1979, Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises, Am. Assoc. Pet. Geol. Bull., 63, 2204-2213
  22. Shuey, R.T, 1985, A simplification of the Zoeppritz equations, Geophysics, 50, 609-614 https://doi.org/10.1190/1.1441936
  23. Singh, S., Minshull, T.A., and Spence, G., 1993, Velocity structure of a gas hydrate reflector, Science, 260, 204-207 https://doi.org/10.1126/science.260.5105.204
  24. Sloan, E.D., 1998, Clathrate hydrate of natural gases, New York: Marcel Dekker, 705p
  25. Smith, W.H.F., and Sandwell, D.T., 1997, Global sea floor top-ography from satellite altimetry and ship depth sounding, Science, 277, 1956-1962 https://doi.org/10.1126/science.277.5334.1956
  26. Swan, H.W. 1991, Amplitude-versus-offset measurement errors in a finely layered medium, Geophysics, 56, 41-49 https://doi.org/10.1190/1.1442956
  27. Taner, M.T., and Koehler, F., 1981, Surface consistence corrections, Geophysics, 46, 17-22 https://doi.org/10.1190/1.1441133
  28. Timivella, U., and Accaino, F., 2000, Compressional velocity structure and Poisson's ratio in marine sediments with gas hydrate and free gas by inversion of reflected and refracted seismic data (South Shetland Islands, Antarctica), Marine Geology, 164, 13-27 https://doi.org/10.1016/S0025-3227(99)00123-1
  29. Walden, A.T., 1991, Making AVO sections more robust, Geophysical Propecting, 39, 915-942 https://doi.org/10.1111/j.1365-2478.1991.tb00350.x
  30. Zoeppritz, K., 1919, Erdbebenwellen VIII B, Uber Reflexion and Durchgang seismischer Wellen durch unstetigkeitsflachen, Gottinger Nachr., 1, 66-84