전단변형을 고려한 적층복합 I형 박벽보의 C유한요소

A C Finite Element of Thin-Walled Laminated Composite I-Beams Including Shear Deformation

  • 투고 : 2006.04.14
  • 심사 : 2006.06.10
  • 발행 : 2006.06.27

초록

본 연구에서는 직교좌표계에 근거한 적층복합 I형 박벽보의 유한요소 해석을 위한 새로운 블록 강도행렬을 제안한다. 변위장은1차 전단변형을 고려한 보 이론을 사용하여 정의되었다. 축방향 변위는 Timoshenko 보이론과 수정된 Vlasov 박벽보 이론을 결합하여 투영단면의 면 변형과 면외 변형의 합으로 나타낸다. 유도된 강성행렬은 휨 전단변형과 뒴 비틂에 의한 영향을 고려한다. 본 유한요소 에서는 2절점, 3절점, 4절점의 세 가지 보요소를 제안하였다. 3절점과 4절점 보 요소는 적층복합 보의 휨 해석에 효과적이었다. 다른 연구자의 수치해석 결과와 비교 검토를 통하여 새로운 유한요소의 활용성과 정확성을 입증하였다.

This paper presents a new block stiffness matrix for the analysis an orthogonal Cartesian coordinate system. The displacement fields are defined using the first order shear deformable beam theory. The longitudinal displacement can be expressed as the sum of the projected plane deformation of the cross-section due to Timoshenko's beam theory and axial warping deformation due to modified Vlasov's thin-waled beam theory. The derived element takes into account flexural shear deformation and torsional warping deformation. Three different types of beam elements, namely, the two-noded, three-noded, and four-noded beam elements, are developed. The quadratic and cubic elements are found to be very efficient for the flexural analysis of laminated composite beams. The versatility and accuracy of the new element are demonstrated by comparing the numerical results available in the literature.

키워드

참고문헌

  1. 박영석, 권효찬, 신동구 (2000) Vlasov형 박벽보 이론에 의한 대칭적층 개단면 복합재 보의 휨해석, 대한토목학회논문집, 제 20권 I-A호, pp.125-141
  2. Back, S. Y. and Will, K. M. (1998) A shear-flexible element with warping for thin-walled open beams, International Journal for Numerical Methods in Engineering, Vol. 43, pp.1173-1191 https://doi.org/10.1002/(SICI)1097-0207(19981215)43:7<1173::AID-NME340>3.0.CO;2-4
  3. Bakis, C. E., Bank, L. C., Brown, V.L., Cosenza, E., Davalos, J. F., Lesko, J. J., Machida, A., Rizkalla, S. H., and Triantafillou, T. C. (2002) Fiber-reinforced polymer composites for construction-state-of-the-art review, Journal of Composites for Construction, Vol. 6, No. 2, pp.73-87 https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73)
  4. Barbero, E. J. (1999) Introduction to Composite Materials Design, Taylor & Francis
  5. Barbero, E. J., Lopez‐Anido, R. and Davalos, J. F. (1993) On the mechanics of thin-walled laminated composite beams, Journal of Composite Materials, Vol. 27, No. 8, pp.806-829 https://doi.org/10.1177/002199839302700804
  6. Bauld N. R. and Tzeng L. S. (1984) A Vlasov theory for fiber‐reinforced beams with thin-walled open cross section, International Journal of Solids and Structures, Vol. 20, No. 3, pp.277-97 https://doi.org/10.1016/0020-7683(84)90039-8
  7. Chandra, R. and Chopra, I. (1991) Experimental and theoretical analysis of composite I-beams with elastic couplings, AIAA Journal, Vol. 29, No. 12, pp.2197 -2206 https://doi.org/10.2514/3.10860
  8. Davalos, J. F. and Qiao, P. (1997) Analytical and experimental study of lateral and distortional buckling of FRP wide‐flange beams, Journal of Composites for Construction, Vol. 1, No. 4, pp.150 -159 https://doi.org/10.1061/(ASCE)1090-0268(1997)1:4(150)
  9. Gjelsvik, A. (1981) The Theory of Thin-Walled Bars, John Wiley and Sons Inc., NY
  10. Hughes, T. J. R. (1987) The Finite Element Method- Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs, N.J.
  11. Jung, S. N. and Lee, J. Y. (2003) Closed-form analysis of thin-walled composite I-beams considering non-classical effects, Composite Structures, Vol. 60, pp.9-17 https://doi.org/10.1016/S0263-8223(02)00318-5
  12. Lee, J. and Lee, S. (2004) Flexural‐torsional behavior of thin-walled composite beams, Thin-Walled Structures, Vol. 42, No. 9, pp.1293-1305 https://doi.org/10.1016/j.tws.2004.03.015
  13. Lee, J. (2005) Flexural analysis of thin-walled composite beams using shear‐deformable beam theory, Composite Structures, Vol. 70, pp.212- 222 https://doi.org/10.1016/j.compstruct.2004.08.023
  14. Lin, Z. M., Polyzois, D. and Shah, A. (1996) Stability of thin-walled pultruded structural members by the finite element method, Thin-Walled Structures, Vol. 24, pp.1-18 https://doi.org/10.1016/0263-8231(95)00034-8
  15. Maddur, S. S. and Chaturvedi, S. K. (2000) Laminated composite open profile sections: non-uniform torsion of I-sections, Composite Structures, Vol. 50, pp.159-169 https://doi.org/10.1016/S0263-8223(00)00093-3
  16. Mottram, J. T. (1992) Lateral‐torsional buckling of a pultruded I-beam, Composites, Vol. 32, No. 2, pp.81-92
  17. Pandey, M. D., Kabir, M. Z. and Sherbourne, A. N. (1995) Flexural‐torsional stability of thin-walled composite I-section beams, Composites Engineering., Vol. 5, No. 3, pp.321-342 https://doi.org/10.1016/0961-9526(94)00101-E
  18. Qiao, P., Zou, G. and Davalos, J. F. (2003) Flexuraltorsional buckling of fiber‐reinforced plastic composite cantilever I-beams, Composite Structures, Vol. 60, pp.205-217 https://doi.org/10.1016/S0263-8223(02)00304-5
  19. Qin, Z. and Librescu, L. (2002) On a sheardeformable theory of anisotropic thin-walled beams: further contribution and validations, Composite Structures, Vol. 56, No. 2, pp. 345-358 https://doi.org/10.1016/S0263-8223(02)00019-3
  20. Reddy, J. N. (1997) Mechanics of Laminated Composite Plates: Theory and Analysis, CRC Press
  21. Vlasov, V. Z. (1961) Thin-Walled Elastic Beams, Israel Program for Scientific Translations, Jerusalem, Israel