실험 쥐 해마조직배양에서 전자기 자극이 신경조직발생 및 증식에 미치는 영향

Effects of electromagnetic stimulation on neurogenesis and neuronal proliferation in rat hippocampal slice culture

  • 김덕수 (성균관대학교 의과대학 강북삼성병원 소아과) ;
  • 최응상 (중앙대학교 의과대학 소아과학교실) ;
  • 채수안 (중앙대학교 의과대학 소아과학교실)
  • Kim, Deok-Soo (Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Choi, Eung Sang (Department of Pediatrics, College of Medicine, Chung-Ang University) ;
  • Chae, Soo Ahn (Department of Pediatrics, College of Medicine, Chung-Ang University)
  • 투고 : 2005.11.11
  • 심사 : 2006.01.13
  • 발행 : 2006.05.15

초록

목 적 : 경뇌 전자기 자극법은 변조 자기장을 이용하여 뇌세포에 대한 직접적인 영향을 주지 않으면서 중추 신경계를 자극할 수 있는 비침습적인 방법이다. 이전의 연구들은 대부분 생체 동물을 대상으로 수행되어져 왔으며 배양 조직에서의 연구는 별로 이루어진 바 없다. 이에 본 연구에서는 배양된 해마 절편에서 다른 주파수의 전자기 자극이 신경원에 미치는 영향과 약물에 의한 세포 손상 후 전자기 자극의 세포보호효과 여부에 대해 알아보고자 하였다. 방 법 : 생후 8일된 실험쥐의 대뇌를 적출하여 dissection microscope 하에서 양쪽 해마 부위를 분리하고 tissue chopper를 이용하여 $450{\mu}M$ 두께로 절편을 만든 후 Stoppini가 고안한 방법대로 배양을 시행하였다. 각각 5개의 건강한 해마 절편이 포함된 inserts를 선택하고, 전자기 자극군에 대해 0.67 Hz와 50 Hz의 주파수로 각각 배양 5일부터 3일 간격으로 6차례 전자기 자극을 가하였다. 또한, 배양 제 14일에 inserts 2개에 $100{\mu}M$ NMDA에 노출시키고 3일 후부터 3일 간격으로 insert 1개에 전자기 자극을 3차례 시행하였고 다른 1개의 insert와 대조군에는 자극을 가하지 않았다. 결 과 : 전자기 자극 후 신경원의 활성도를 알아보기 위해 NeuN 단백 발현을 western blotting을 이용하여 측정한 후 ${\beta}$-actin 단백 발현과의 비를 얻어 각 군에서 비교 분석하였다. 대조군($1.01{\pm}0.27$)에 비해 전자기 자극군에서 NeuN의 발현이 증가되어 있었으며, 특히 저주파 자극군($1.12{\pm}0.14$)에서보다 고주파 자극군($1.27{\pm}0.17$)에서 현저하였고 고주파 자극군에서는 대조군에 비해 통계적으로 유의한 증가를 보였다(P<0.05). 또한, NMDA 노출 후 실험군(전자기 자극군 : $1.15{\pm}0.27$, 전자기 비자극군 : $0.92{\pm}0.09$)에서 대조군($1.26{\pm}0.04$)에 비해 NeuN 발현이 감소되었으나 전자기 비자극군에서 더 많이 감소한 것을 알 수 있었다. 결 론 : 배양된 해마조직의 신경세포에 대한 전자기 자극은 저주파 자극군에 비해 고주파 자극군에서 대조군보다 통계적으로 유의한 수준의 NeuN 발현의 증가를 관찰할 수 있었고, NMDA 노출 후 전자기 자극을 가한 군에서 대조군보다 NeuN 발현 감소가 관찰되기는 하였으나 고주파 자극군에서는 통계적으로 유의하지 않은 정도였던 것으로 보아 전자기 자극이 신경원 활성을 증가시켜 신경세포의 발생 및 증식을 유도하며 세포 손상에 대한 신경보호효과도 보인다는 것을 알 수 있었다. 따라서 전자기 자극은 여러 신경 질환에 있어서 치료적 역할을 할 수 있는 가능성이 있다고 사료된다.

Purpose : Transcranial electromagnetic stimulation(TMS) is a noninvasive method which stimulates the central nervous system through pulsed magnetic fields without direct effect on the neurons. Although the neurobiologic mechanisms of magnetic stimulation are unknown, the effects on the brain are variable according to the diverse stimulation protocols. This study aims to observe the effect of the magnetic stimulation with two different stimulation methods on the cultured hippocampal slices. Methods : We obtained brains from 8-days-old Spague-Dawley rats and dissected the hippocampal tissue under the microscope. Then we chopped the tissue into 450 µm thickness slices and cultured the hippocampal tissue by Stoppini's method. We divided the inserts, which contained five healthy cultured hippocampal slices respectively, into magnetic stimulation groups and a control group. To compare the different effects according to the frequency of magnetic stimulation, stimulation was done every three days from five days in vitro at 0.67 Hz in the low stimulation group and at 50 Hz in the high stimulation group. After N-methyl-D-aspartate exposure to the hippocampal slices at 14 days in vitro, magnetic stimulation was done every three days in one and was not done in another group. To evaluate the neuronal activity after magnetic stimulation, the $NeuN/{\beta}$-actin ratio was calculated after western blotting in each group. Results : The expression of NeuN in the magnetic stimulation group was stronger than that of the control group, especially in the high frequency stimulation group. After N-methyl-D-aspartate exposure to hippocampal slices, the expression of NeuN in the magnetic stimulation group was similar to that of the control group, whereas the expression in the magnetic non-stimulation group was lower than that of the control group. Conclusion : We suggest that magnetic stimulation increases the neuronal activity in cultured hippocamal slices, in proportion to the stimulating frequency, and has a neuroprotective effect on neuronal damage.

키워드

과제정보

연구 과제 주관 기관 : 중앙대학교

참고문헌

  1. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985;1:1106-7
  2. Barker AT. An introduction to the basic principles of magnetic nerve stimulation. J Clin Neurophysiol 1991;8:26-37 https://doi.org/10.1097/00004691-199101000-00005
  3. Barker AT, Freeston IL, Jalinous R, Jarratt JA. Magnetic stimulation of the human brain and peripheral nervous system : an introduction and the results of an initial clinical evaluation. Neurosurgery 1987;20:100-9
  4. Gates JR. Transcranial magnetic stimulation. Neuroimaging Clin N Am 1995;5:711-20
  5. Jennum P, Friberg L, Fuglsang-Frederiksen A, Dam M. Speech localization using repetitive transcranial magnetic stimulation. Neurology 1994;44:269-73 https://doi.org/10.1212/WNL.44.2.269
  6. George MS, Wassermann EM, Post RM. Transcranial magnetic stimulation : a neuropsychiatric tool for the 21st century. J Neuropsychiatry Clin Neurosci 1996;8:373-82 https://doi.org/10.1176/jnp.8.4.373
  7. George MS, Wassermann EM, Williams WA, Callahan A, Ketter TA, Basser P, et al. Daily repetitive transcranial magnetic stimulation(rTMS) improves mood in depression. Neuro Report 1995;6:1853-6 https://doi.org/10.1097/00001756-199510020-00008
  8. Pascual-Leone A, Rubio B, Pallardo F, Catala MD. Rapidrate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 1996; 348:233-7 https://doi.org/10.1016/S0140-6736(96)01219-6
  9. Greenberg BD, George MS, Martin JD, Benjamin J, Schlaepfer TE, Altemus M, et al. Effect of prefrontal repetitive transcranial magnetic stimulation in obsessivecompulsive disorder : a preliminary study. Am J Psychiatry 1997;154:867-9 https://doi.org/10.1176/ajp.154.6.867
  10. McCann UD, Kimbrell TA, Morgan CM, Anderson T, Geraci M, Benson BE, et al. Repetitive transcranial magnetic stimulation for posttraumatic stress disorder. Arch Gen Psychiatry 1998;55:276-9 https://doi.org/10.1001/archpsyc.55.3.276
  11. George MS, Lisanby S, Sackeim HA. Transcranial magnetic stimulation. Arch Gen Psychiatry 1999;56:300-11 https://doi.org/10.1001/archpsyc.56.4.300
  12. Mally J, Stone TW. Improvement in Parkinsonian symptoms after repetitive transcranial magnetic stimulation. J Neurol Sci 1999;162:179-84 https://doi.org/10.1016/S0022-510X(98)00318-9
  13. Post A, Keck ME. Transcranial magnetic stimulation as a therapeutic tool in psychiatry : what do we know about the neurobiological mechanisms?. J Psychiatr Res 2001;35:193-215 https://doi.org/10.1016/S0022-3956(01)00023-1
  14. Wassermann EM, Lisanby SH. Therapeutic application of repetitive transcranial magnetic stimulation : a review. Clin Neurophysiol 2001;112:1367-77 https://doi.org/10.1016/S1388-2457(01)00585-5
  15. Gahwiler BH. Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 1981:4:329-42 https://doi.org/10.1016/0165-0270(81)90003-0
  16. Gahwiler BH. Slice cultures of cerebellar, hippocampal and hypothalamic tissue. Experientia 1984;40:235-43 https://doi.org/10.1007/BF01947561
  17. Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 1991;37:173-82 https://doi.org/10.1016/0165-0270(91)90128-M
  18. Gahwiler BH, Capogna M, Debanne D, McKinney RA, Thompson SM. Organotypic slice cultures : a technique has come of age. Trends Neurosci 1997;20:471-7 https://doi.org/10.1016/S0166-2236(97)01122-3
  19. Mullen RJ, Buck CR, Smith AM. NeuN, a neuronal specific nuclear protein in vertebrates. Development 1992;116:201-11
  20. Sarnat HB, Nochlin D, Born DE. Neuronal nuclear antigen (NeuN) : a marker of neuronal maturation in the early human fetal nervous system. Brain Dev 1998;20:88-94 https://doi.org/10.1016/S0387-7604(97)00111-3
  21. Abd-El-Basset EM. The effect of dibutyryl cyclic AMP on the expression of actin isoform in astroglia. Histochem J 2000;32:581-90 https://doi.org/10.1023/A:1026738600838
  22. Ji RR, Schlaepfer TE, Aizenman CD, Epstein CM, Qiu D, Huang JC, et al. Repetitive transcranial magnetic stimulation activates specific regions in rat brain. Proc Natl Acad Sci USA 1998;95:15635-40 https://doi.org/10.1073/pnas.95.26.15635
  23. Kole MHP, Fuchs E, Ziemann U, Paulus W, Ebert U. Changes in 5-HT1A and NMDA binding sites by a single rapid transcranial magnetic stimulation procedure in rats. Brain Res 1999;826:309-12 https://doi.org/10.1016/S0006-8993(99)01257-3
  24. Keck ME, Sillaber I, Ebner K, Welt T, Toschi N, Kaehler ST, et al. Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. Eur J Neurosci 2000;12:3713-20 https://doi.org/10.1046/j.1460-9568.2000.00243.x
  25. Fleischmann A, Sternheim A, Etgen AM, Li C, Grisaru N, Belmaker RH. Transcranial magnetic stimulation downregulates beta-adrenoreceptors in rat cortex. J Neural Transm 1996;103:1361-6 https://doi.org/10.1007/BF01271196
  26. Fujiki M, Steward O. High frequency transcranial magnetic stimulation mimics the effects of ECS in upregulating astroglial gene expression in the murine CNS. Brain Res Mol Brain Res 1997;44:301-8 https://doi.org/10.1016/S0169-328X(96)00232-X
  27. Muller MB, Toschi N, Kresse AE, Post A, Keck ME. Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology 2000;23:205-15 https://doi.org/10.1016/S0893-133X(00)00099-3
  28. Ben-Shachar D, Belmaker RH, Grisaru N, Klein E. Transcranial magnetic stimulation induces alterations in brain monoamines. J Neural Transm 1997;104:191-7 https://doi.org/10.1007/BF01273180
  29. Ben-Shachar D, Gazawi H, Riboyad-Levin J, Klein E. Chronic repetitive transcranial magnetic stimulation alters beta-adrenergic and 5-HT2 receptor characteristics in rat brain. Brain Res 1999;816:78-83 https://doi.org/10.1016/S0006-8993(98)01119-6
  30. Post A, Müller MB, Engelmann M, Keck ME. Repetitive transcranial magnetic stimulation in rats : evidence for a neuroprotective effect in vitro and in vivo. Eur J Neurosci 1999;11:3247-54 https://doi.org/10.1046/j.1460-9568.1999.00747.x
  31. Arias-Carrión O, Verdugo-Díaz L, Feria-Velasco A, Millán- Aldaco D, Gutiérrez AA, Hernández-Cruz A, Drucker- Colín R. Neurogenesis in the subventricular zone following transcranial magnetic field stimulation and nigrostriatal lesions. J Neurosci Res 2004;78:16-28 https://doi.org/10.1002/jnr.20235
  32. Funamizu H, Ogiue-Ikeda M, Mukai H, Kawato S, Ueno S. Acute repetitive transcranial magnetic stimulation reactivates dopaminergic system in lesion rats. Neurosci Lett 2005;383:77-81 https://doi.org/10.1016/j.neulet.2005.04.018
  33. Jung KH, Choi CS, Park JS, Lee KH, Hahm W, Lee SH, et al. Effects of repetitive transcranial magnetic stimulation to temporoparietal cortex in patients with chronic schizophrenia with treatment-resistant auditory hallucinations. J Korean Neuropsychiatr Assoc 2004;43:546-51
  34. Kim HJ, Lee M, Cho HJ, Park KD, Choi KG, Lee HW. Changes in neuronal activity after low frequency repetitive transcranial magnetic stimulation. J Korean Neurol Assoc 2005;23:627-34
  35. Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 1994;117:847-58 https://doi.org/10.1093/brain/117.4.847
  36. Yoo WK, Chung GI, Lee JH, Choi EH, Jun AY, Kim JC, et al. The effect of sub-threshold 1 Hz and 20 Hz repetitive transcranial magnetic stimulation on corticospinal excitability. J Korean Acad Rehabil Med 2003;27:922-7