Synthesis of Cyclotriphosphazene Derivatives for Flame Retardants

Cyclotriphosphazene을 이용한 난연제의 합성

  • Kim, Hae Young (Department of Chemistry, Chungbuk National University) ;
  • Shin, Young Jae (Department of Electrical Engineering and Computer Science, KAIST) ;
  • Ji, Young Jon (Department of Chemistry, Chungbuk National University) ;
  • Shin, Jae Sup (Department of Chemistry, Chungbuk National University)
  • 김해영 (충북대학교 자연과학대학 화학과) ;
  • 신영재 (한국과학기술원 전자전산학과) ;
  • 지영존 (충북대학교 자연과학대학 화학과) ;
  • 신재섭 (충북대학교 자연과학대학 화학과)
  • Received : 2005.10.11
  • Accepted : 2006.01.19
  • Published : 2006.04.10

Abstract

Non-halogen flame retardants have been the focus of extensive research because of environmental problems. Hexakisp-henoxycyclotriphosphazene was synthesized in order to use as the flame retardant of ABS resin. And using bisphenol A, the polymers containing a cyclotriphosphazene structure were synthesized in order to also use as the flame retardant of ABS resin. All of the synthesized polymers themselves had the excellent flame retardancy. And as their molecular weight and crosslinking density were increased, the thermal stability was increased. But when the synthesized compounds were used as the flame retardant for ABS resin, the lower molecular weight compound in these compounds showed the better flame retardancy and the better physical properties of ABS resin.

환경적인 문제로 인하여 할로겐 원소를 갖지 않는 난연제에 대한 연구가 매우 활발하다. 본 연구에서는 hexakisp-henoxycyclotriphosphazene을 합성하였으며, 이것을 ABS 수지의 난연제로 사용하여 보았다. 그리고 bisphenol A를 이용하여 cyclotriphosphazene구조를 갖는 분자량이 큰 화합물들을 합성하여 이들을 역시 ABC 수지의 난연제로 사용하여 보았다. 합성한 고분자들 자신은 매우 우수한 난연성을 보여주었으며 분자량이 커지고 가교구조가 많아질수록 열적 안정성은 더 높아졌다. 그러나 이러한 화합물들을 ABS 수지의 난연제로 사용하였을 때 이들 화합물들 중에서 비교적 분자량이 낮은 화합물이 ABS 수지에 더 우수한 난연성을 나타내게 하였으며 ABS 수지의 물리적인 성질도 더 우수하게 하였다.

Keywords

Acknowledgement

Supported by : 충북대학교

References

  1. P. Potin and R. D. Jaeger, Eur. Polym. J., 27, 341 (1991) https://doi.org/10.1016/0014-3057(91)90185-Q
  2. D. Kumar, A. D. Gupta, and M. Khullar, J. Polym. Sci. Polym. Chem. Ed., 31, 707 (1993) https://doi.org/10.1002/pola.1993.080310315
  3. H. Horacek and S. Pieh, Polym. Int., 49, 1106 (2000) https://doi.org/10.1002/1097-0126(200010)49:10<1106::AID-PI539>3.0.CO;2-I
  4. Q. Wu, J. Lu, and B. Qu, Polym. Int., 52, 1326 (2003) https://doi.org/10.1002/pi.1115
  5. D. Kumar, G. M. Fohlen, and J. A. Parker, J. Appl. Polym. Sci., 21, 3155 (1983)
  6. D. Kumar, G. M. Fohlen, and J. A. Parker, Macromolecules, 16, 1250 (1983) https://doi.org/10.1021/ma00242a002
  7. D. Kumar, G. M. Fohlen, and J. A. Parker, J. Polym. Sci. Polym. Chem., 22, 927 (1984) https://doi.org/10.1002/pol.1984.170220404
  8. D. Kumar, G. M. Fohlen, and J. A. Parker, J. Polym. Sci. Polym. Chem., 24, 2415 (1986) https://doi.org/10.1002/pola.1986.080241004
  9. H. R. Allcock, Chem Mater., 6, 1476 (1994) https://doi.org/10.1021/cm00045a003
  10. S. V. Levchik, G. Camino, M. P. Luda, L. Costa, A. Lindsay, and D. Stevenson, J. Appl. Polym. Sci., 67, 461 (1998) https://doi.org/10.1002/(SICI)1097-4628(19980118)67:3<461::AID-APP9>3.0.CO;2-K
  11. E. D. Weil and N. G. Patel, Fire Mater, 18, 1 (1994) https://doi.org/10.1002/fam.810180102
  12. S. V. Levchik, G. F. Levchik, A. I. Balabanovich, E. D. Weil, and M. Klatt, Angew. Macromol. Chem., 264, 48 (1999) https://doi.org/10.1002/(SICI)1522-9505(19990201)264:1<48::AID-APMC48>3.0.CO;2-W
  13. H. R. Allcock, Phosphorus-Nitrogen Compounds, Academic Press, New York (1972)
  14. W. Zhu, E. D. Weil, and S. Mukhopadhyay, J. Appl. Polym. Sci., 62, 2267 (1996) https://doi.org/10.1002/(SICI)1097-4628(19961226)62:13<2267::AID-APP11>3.0.CO;2-0
  15. S. V. Levchik, G. F. Levchik, G. Camino, L. Costa, and A. I. Lesnikovich, Fire Mater., 20, 183 (1996) https://doi.org/10.1002/(SICI)1099-1018(199607)20:4<183::AID-FAM574>3.0.CO;2-W
  16. H. R. Allcock and E. J. Walsh, J. Am. Chem. Soc., 94, 4538 (1972) https://doi.org/10.1021/ja00768a021