Selection of Superior Poplar and Willow Clones in Growth Performance and Adaptation Abilities at Sudokwon Landfill Site

수도권매립지에서 생장과 적응력이 우수한 포플러류 및 버드나무 클론 선발

  • Koo, Yeong-Bon (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Woo, Kwan-Soo (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Yeo, Jin-Kie (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Yeong-Sik (Department of Forest Genetic Resources, Korea Forest Research Institute)
  • 구영본 (국립산림과학원 산림유전자원부) ;
  • 우관수 (국립산림과학원 산림유전자원부) ;
  • 여진기 (국립산림과학원 산림유전자원부) ;
  • 김영식 (국립산림과학원 산림유전자원부)
  • Received : 2006.09.06
  • Accepted : 2006.11.07
  • Published : 2006.12.30

Abstract

Poplars and willow were planted to identify suitable species and varieties for landfill reclamation at the Sudokwon Landfill Site in 1997. Survival rate, growth performance, vitality, visible foliar injury by pollutants, fungi, and leaf insects, and stem borer damage have been investigated for 10 clones of 4 poplar species and 2 clones of one willow species from 1997 to 2005. The average survival rates of poplar and willow clones were drastically decreased from 90% in 1997 to 53% in 2005. Among poplar species, Populus alba ${\times}$ P. glandulosa showed the highest mean survival rate of 66%, while Populus koreana ${\times}$ P. nigra var. italica and Populus euramericana were the lowest of 41%, respectively in 2005. Clivus, which is one of the clones from Populus alba ${\times}$ P. glandulosa, showed the highest survival rate of 73%. For mean height, Ec028 clone(P. euramericana) showed the highest of $11.2m{\pm}2.1m$ and followed by Clivus of $11.0m{\pm}2.0m$. Clone 131-27(Salix alba) was the lowest of $7.8m{\pm}1.6m$. Vitality, defoliation, visible foliar damage, and stem borer damage were significantly different among clones. Most of Populus alba ${\times}$ P. glandulosa and Salix alba clones seemed to have strong vitality and to be tolerant to various stresses at the site. However, Populus nigra ${\times}$ P. maximowiczii was sensitive to the stress. We have selected 5 clones in total: Clivus as the best clone for waste landfill reclamation, and additionally two Salix clones 131-25, 131-27 and two clones of Populus alba ${\times}$ P. glandulosa (72-9, 72-16) have been selected. These five clones could be supplied for planting at sites having an environment similar to the Sudokwon Landfill Site.

쓰레기 매립지에서 생장과 적응력이 우수한 수종 및 품종을 육성하기 위하여 1997년에 포플러류 4수종(10클론)과 도입종 버드나무 1수종(2클론)을 수도권매립지에 식재한 후 1997년부터 2005년까지의 생존율, 생장, 활력, 공해 및 균 해충에 의한 엽 피해, 그리고 천공충에 의한 피해를 각각 조사하였다. 전체 생존율은 1997년에 평균 90%에서 2005년에는 53%로 크게 감소하였다. 포플러 수종 중 현사시가 2005년에 66%의 생존율을 보여 가장 우수한 반면 양황철과 이태리포플러가 41%로 가장 저조한 생존율을 보였다. 현사시 3호(Clivus) 클론이 73%로 가장 높은 생존율을 보였다. 평균 수고는 이태리포플러 Eco28호가 $11.2m{\pm}2.1m$로 가장 우수하였고 그 다음으로 Clivus($11.0m{\pm}2.0m$)였다. 반면 도입종 버드나무 클론 중에서 131-27은 $7.8m{\pm}1.6m$로 가장 저조한 수고생장을 보였다. 활력, 낙엽율, 엽피해, 그리고 천공충 피해는 클론 간에 통계적 차이가 있었다. 수종별로는 현사시와 도입종 버드나무가 활력이 강하고 매립지 환경의 다양한 스트레스에 적응력이 강한 것으로 나타났으나 양황철나무는 스트레스에 아주 민감하게 반응을 하였다. 우수 클론을 한 클론만 선발하면 현사시 3호(Clivus)를, 추가하여 선발하면 버드나무 2클론(131-25, 131-27), 현사시 4호 2클론(72-9, 72-16)을 포함하여 총 5클론을 선발할 수 있었다. 이들 5클론은 수도권매립지와 비슷한 환경에 보급할 수 있을 갓으로 판단된다.

Keywords

References

  1. 구영본, 김인식, 여진기, 이상현, 주창한. 1999. 속성수를 이용한 쓰레기 매립지 침출수 및 오염토양의 정화. 포플러 16: 26-36
  2. 구영본, 여진기, 김인식, 김태수, 김영중, 여인선. 2002. 포플러 및 버드나무 클론의 수도권매립지 적응성 검정. 한국임학회지 91(3): 405-411
  3. 구영본, 이성규, 김판기, 변광옥, 우수영. 1997. 난지도 폐기물 매립지의 포플러 생장 및 오염물질 흡수 가능성. 포플러 14: 23-32
  4. 김판기, 김선희, 이상모, 이철호, 이은주. 2002. 김포 수도권 매립지에 식재된 현사시나무의 환경 적응 반응(2)-수분생리를 중심으로- 한국임학회지 91(3): 279-286
  5. 수도권매립지관리공사. 2006. 드림파크백서. 421pp
  6. 정종관, 장원. 1995. 쓰레기 매립지 침출수 거동 예측평가 연구. 환경영향평가 4(1): 9-15
  7. Adarve, M.j., Hernandez, A.J., Gil, A. and Pastor, J. 1998. Boron, zinc, iron and manganese contents in four grassland species. Journal of Environmental Quality 27: 1286-1293 https://doi.org/10.2134/jeq1998.00472425002700060003x
  8. Aronsson, P. and Perttu, K. 2001. Willow vegetation filters for wastewater treatment and soil remediation combined with biomass production. Forestry Chronicle, 77(2): 293-299 https://doi.org/10.5558/tfc77293-2
  9. Baker, A.J.M., McGrath, S.P., Sidoli, C.M.D. and Reeves, R.D. 1994. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources Conserv. Recyc. 11: 41-49 https://doi.org/10.1016/0921-3449(94)90077-9
  10. Bowman, M.S., Clune, T.S. and Sutton, B.G. 2002. Sustainable management of landfill leachate by irrigation. Water, Air and Soil Pollution 134: 81-96 https://doi.org/10.1023/A:1014114500269
  11. Broberg, C.L., Borden, J.H. and Humble, L.M. 2002. Distribution and abundance of Cryptorhynchus lapathi on Salix spp. in British Columbia. Canadian Journal of Forest Research 32(3): 561-568 https://doi.org/10.1139/x01-211
  12. Dickinson, N.M. 2000. Strategies for sustainable woodland on contaminated soils. Chemosphere 41: 259-263 https://doi.org/10.1016/S0045-6535(99)00419-1
  13. Dimitriou, I. and Aronsson, P. 2005. Willows for energy and phytoremdiation in Sweden. Unasylva 221, 56: 47-50
  14. Dix, M.E., Klopfenstein, N.B., Zhang, J.W., Workman, S.W. and Kim. M.S. 1997. Potential use of Populus for phytoremediation of environmental pollution in riparian zones. USDA Forest Service Gen. Tech. Rep. RM-GTR-297. 326pp
  15. Gordon, A.M., McBride, R.A. and Fiskin, A.J. 1989a. The effect of landfill leachate spraying on foliar nutrient concentrations and leaf transpiration in a northern hardwood forest, Canada. Forestry 62: 19-28 https://doi.org/10.1093/forestry/62.1.19
  16. Gordon, A.M., McBride, R.A., Fiskin, A.J. and Bates, T.E. 1989b. The effect of landfill leachate irrigation on red maple (Acer rubrum L.) and sugar maple (Acer saccharum Marsh.) seedling growth and on foliar nutrient concentrations. Environmental Pollution 56: 327-336 https://doi.org/10.1016/0269-7491(89)90078-X
  17. Greger. M. and Landberg, T. 1999. Use of willow in phytoextraction. International Journal of Phytoremediation 1(2): 115-123 https://doi.org/10.1080/15226519908500010
  18. Harrington, D.W. and Maris, P.J. 1986. The treatment of leachate -A UK perspective. Water Pollution Control 85: 45-56
  19. Isebrands, J.G. 2006. Phytoremediation applications with poplars and wiIJows: a worldwide overview. Abstracts of International Poplar Symposium, p108, 146pp. June 5-9, 2006. Nanjing, China
  20. Jones, D.L., Williamson, K.L. and Owen, A.G. 2006. Phytoremediation of landfill leachate. Waste Management 26(8): 825-837 https://doi.org/10.1016/j.wasman.2005.06.014
  21. Ke, J. and Skelly, J.M. 1989. An evaluation of norway spruce in northeastern United States. Air Pollution and Forest Decline (J.B. Bucher and I. Bucher-Wallin, eds.). Proc, 14th Int. Meeting for Specialists in Air Pollution Effects on Forest Ecosystems, IUFRO P2.05, Interlaken, Switzerland, Oct. 2-8, 1988. Birmensdorf, 1989. p. 55-60
  22. Light, L.A and Madison, M. 1995. Using poplar trees as a landfill cover: Experiences with the Ecolotree Cap. Swana 11th Annual Northwest Regional Solid Waste Symposium, Portland, Oregon, April 12-14.8 pp
  23. Menser, H.A., Winant, W.M. and Bennet, O.L. 1983. Spray irrigation with landfill leachate. Biocycle 24: 22-25
  24. Rawlinson, H., Dickinson, N., Nolan, P. and Putwain, P. 2004. Woodland establishment on closed old-style landfill sites in N.W. England. Forest Ecology and Management 202: 265-280 https://doi.org/10.1016/j.foreco.2004.07.034
  25. SYSTAT Software Inc. 2004. SYSTAT 11, Statistics II. SYSTAT Software Inc., Richmond, C.A. 657pp