Influence of Filler Systems and Microstructures of SBR on Stress Softening Effect of SBR Vulcanizates

SBR의 미세 구조와 보강 시스템이 SBR 가황물의 응력 풀림 효과에 미치는 영향

  • Published : 2006.09.30

Abstract

Stress softening behaviors of SBR vulcanizates reinforced with silica or carbon black were studied. Two types of SBR with different 1,2-unit contents of 18 and 60 wt% were used and three filler systems of carbon black and silica with/without silane coupling agent were employed. Stress softening behaviors of the SBR vulcanizates were varied with the SBR types as well as the filler systems. The silica-filled rubber specimens had higher residual strains than the carbon black-filled ones. The residual strains of silica-filled vulcanizates were remarkably reduced by adding a silane coupling agent. The maximum loads at 50% maximum stretch of the carbon black-filled vulcanizates were lower than those of the silica-filled ones. On the contrary, the maximum loads at 200% maximum stretch of the carbon black-filled vulcanizates were higher than those of the silica-filled ones. The maximum loads of the specimens with the 1,2-unit content of 60 wt% are higher than those with the 1,2-unit content of 18 wt% irrespective of the filler systems.

실리카 또는 카본블랙으로 보강된 SBR 가황물의 응력 풀림 거동을 연구하였다. 1,2-단위체 함량이 18과 60 wt%인 두 가지 SBR을 사용하였으며 보강 시스템으로 카본블랙과 실리카에 실란 결합제가 없는 것 그리고 실리카에 실란 결합제가 있는 것 등 세 가지를 사용하였다. SBR 가황물의 응력 풀림 거동은 보강 시스템뿐만 아니라 SBR 종류에 따라서도 달라졌다. 실리카로 보강된 시료는 카본블랙으로 보강된 시료보다 잔류 변형률이 높았다. 실리카로 보강된 가황물의 잔류 변형률은 실란 커플링제를 첨가함으로써 크게 감소하였다. 카본블랙으로 보강된 가황물의 50% 최대 신장에서의 최대 하중은 실리카로 보강된 가황물의 경우보다 낮았다. 이와는 반대로 카본블랙으로 보강된 가황물의 200% 최대 신장에서의 최대 하중은 실리카로 보강된 가황물의 경우보다 높았다. 1,2-단위체 함량이 60 wt%인 시료의 최대 하중은 1,2-단위체 함량이 18 wt%인 시료의 경우보다 보강 시스템에 상관없이 높았다.

Keywords

References

  1. L. Mullins and N. Tobin, 'Theoretical model for the elastic behaviour of filler-reinforced vulcanized rubbers', Rubber Chem. Technol., 30, 555 (1957) https://doi.org/10.5254/1.3542705
  2. L. Mullins, 'Softening of rubber by deformation', Rubber Chem. Technol., 42, 339 (1969) https://doi.org/10.5254/1.3539210
  3. A. Dorfmann and R. W. Ogden, 'A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber', Int. J. Solids Structures, 41, 1855 (2004) https://doi.org/10.1016/j.ijsolstr.2003.11.014
  4. G. R. Cotton, 'Mixing of carbon black with rubber. I. Measurement of dispersion rate by changes in mixing torque', Rubber Chem. Technol., 57, 118 (1984) https://doi.org/10.5254/1.3535988
  5. M. E. Semaan, C. A. Quarles, and L. Nikiel, 'Carbon black and silica as reinforcers of rubber polymers: Doppler broadening spectroscopy results', Polym. Deg. Stab., 75, 59 (2002)
  6. T. C. Gruber and C. R. Herd, 'Anisometry measurements in carbon black aggregate populations', Rubber Chem. Technol., 70, 727 (1997) https://doi.org/10.5254/1.3538456
  7. P. L. Teh, Z. A. Mohd Ishak, A. S. Hashim, J. Karger-Kocsis, and U. S. Ishiaku, 'On the potential of organoclay with respect to conventional fillers (carbon black, silica) for epoxidized natural rubber compatibilized natural rubber vulcanizates', J. Appl. Polym. Sci., 94, 2438 (2004) https://doi.org/10.1002/app.21188
  8. H. Raab, J. Frohlich, and D. Goritz, 'Surface topography and its influence on the activity of carbon black', Kautsch. Gummi Kunstst., 53, 137 (2000)
  9. S.-S. Choi, C. Nah, S. G. Lee, and C. W. Joo, 'Effect of filler-filler interaction on rheological behaviors of natural rubber compounds filled with both carbon black and silica', Polym. Int., 52, 23 (2003) https://doi.org/10.1002/pi.975
  10. S. Wolff and M.-J. Wang, 'Filler-elastomer interactions. Part IV. The effect of the surface energies of fillers on elastomer reinforcement', Rubber Chem. Technol., 65, 329 (1992) https://doi.org/10.5254/1.3538615
  11. Y.-C. Ou, Z.-Z. Yu, A. Vidal, and J. B. Donnet, 'Effects of alkylation of silica filler on rubber reinforcement', Rubber Chem. Technol., 67, 834 (1994) https://doi.org/10.5254/1.3538714
  12. Y. Li, M. J. Wang, T. Zhang, F. Zhang, and X. Fu, 'Study on dispersion morphology of silica in rubber', Rubber Chem. Technol., 67, 693 (1994) https://doi.org/10.5254/1.3538704
  13. A. S. Hashim, B. Azahari, Y Ikeda, and S. Kohjiya, 'Effect of bis(3-triethoxysilyl-propyl)tetra-sulfide on silica reinforcement of styrene-butadiene rubber', Rubber Chem. Technol., 71, 289 (1998) https://doi.org/10.5254/1.3538485
  14. S.-S. Choi, 'Filler-polymer interactions in both silica and carbon black-filled styrene-butadiene rubber compounds', J. Polym. Sci. B: Polym. Phys., 39, 439 (2001) https://doi.org/10.1002/1099-0488(20010215)39:4<439::AID-POLB1016>3.0.CO;2-3
  15. S.-S. Choi, 'Filler-polymer interactions in filled styrene-butadiene rubber compounds', Kor. Polym. J., 9, 45 (2001)
  16. S.-S. Choi and I.-S. Kim, 'Filler-polymer interactions in filled polybutadiene compounds', Eur. Polym. J., 38, 1265 (2002) https://doi.org/10.1016/S0014-3057(01)00300-7
  17. S.-S. Choi, I.-S. Kim, S. G. Lee, and C. W. Joo, 'Filler-polymer interactions of styrene and butadiene units in silica-filled styrene-butadiene rubber compounds', J. Polym. Sci. B: Polym. Phys., 42, 577 (2004) https://doi.org/10.1002/polb.10689
  18. S.-S. Choi, 'Influence of polymer-filler interactions on retraction behaviors of natural rubber vulcanizates reinforced with silica and carbon black', J. Appl. Polym. Sci., 99, 691 (2006) https://doi.org/10.1002/app.22562
  19. S.-S. Choi, K.-H. Chung, and C. Nah, 'Improvement of properties of silica-filled styrene-butadiene rubber (SBR) compounds using acrylonitrile-styrene-butadiene rubber (NSBR)', Polym. Adv. Technol., 14, 557 (2003) https://doi.org/10.1002/pat.367
  20. S.-S. Choi, C. Nah, and B.-W. Jo, 'Properties of natural rubber composites reinforced with silica or carbon black: Influence of cure accelerator content and filler dispersion', Polym. Int., 52, 1382 (2003) https://doi.org/10.1002/pi.1232
  21. S.-S. Choi, 'Influence of the silica content on rheological behaviors and cure characteristics of silica-filled styrene-butadiene rubber compounds', Polym. Int., 50, 524 (2001) https://doi.org/10.1002/pi.660