Effect of Thermal Aging Temperature on Weight Loss and Glass Transition Temperature of Epoxy Adhesives

열화 온도가 에폭시 접착제의 질량변화 및 유리전이온도에 미치는 영향

  • Published : 2006.03.30

Abstract

In this study, the effect of thermal aging temperature on the weight loss, glass transition temperature, and morphology of epoxy adhesives cured with amine (D-230), amide (G-5022), and anhydride (HN-2200) was investigated. As a result, the weight loss of three specimens was increased with increasing the thermal aging temperature. The result was attributed to the thermal aging which was occurred at the surface of adhesive specimens at high aging temperature, resulting in increasing the weight loss of the specimens. According to the DSC result, the glass transition temperature of DGEBA/D-230 and DGEBA/G-5022 samples war increased as the aging temperature increased, whereas the glass transition temperature of DGEBA/HN-2200 samples was constant above aging temperature of $150^{\circ}C$ and aging tine of 7 days. The SEM result indicated that the surface of DGEBA/G-5022 specimen showed more rough topography than that of DGEBA/D-230 or DGEBA/HN-2200 specimen after thermal aging. This could be correlated with the result of weight loss.

본 연구에서는 열화 온도가 아민 (D-230), 아마이드 (G-5022), 그리고 산무수물 (HN-2200)에 의해 경화된 에폭시 접착제의 질량변화, 유리전이온도 및 모폴로지에 미치는 영향을 고찰하였다. 실험 결과, 3가지 접착제 시편의 질량감소는 열화 온도가 증가함에 따라 증가하였다. 이는 열화 온도가 증가함에 따라 시편의 표면에서 더 많은 열화가 발생하여 시편의 질량이 감소한 것으로 판단된다. DSC 분석결과에 따르면 DGEBA/D-230과 DGEBA/G-5022 시편의 유리전이온도는 열화 온도에 따라 증가하였으며, DGEBA/HN-2200 시편의 유리전이온도는 열화온도 $150^{\circ}C$, 열화 시간 7일 이상에서 일정한 값을 나타내었다. SEM 결과에서 열화 이후의 DGEBA/G-5022 시편의 표면은 DGEBA/D-230 또는 DGEBA/HN-2200 시편보다 거친 모폴로지를 나타내었다. 이 결과는 시편의 질량 변화에서 얻은 결과와 일치하였다.

Keywords

References

  1. R. S. Bauer, 'Epoxy Resin Chemistry', Advanced in Chemistry Series, No. 114, p. 1, American Chemical Society, Washington DC, 1979
  2. S. J. Park, F. L. Jin, and J. S. Shin, 'Physicochemical and Mechanical Interfacial Properties of Trifluoromethyl Groups Containing Epoxy Resin Cured with Amine', Mater. Sci. Eng. A, 390, 240 (2005) https://doi.org/10.1016/j.msea.2004.08.022
  3. C. A. May, 'Epoxy Resins, Chemistry and Technology', p. 1, Marcel Dekker, New York, 1988
  4. S. J. Park and F. L. Jin, 'Thermal Stabilities and Dynamic Mechanical Properties of Sulfone-containing Epoxy Resin Cured with Anhydride', Polym. Degrad. Stab., 86, 515 (2004) https://doi.org/10.1016/j.polymdegradstab.2004.06.003
  5. L. Barral, J. Cano, A. J. Lopez, J. L. Lopez, P. Nogueira, and C. Ramirez, 'Thermal Degradation of a Diglycidylether of Bisphenol A/1,3-bisarninomethylcyclohexane (DGEBA/1,3-BAC) Epoxy Resin System', Therrnochim Acta, 269/270, 253 (1995) https://doi.org/10.1016/0040-6031(95)02364-X
  6. S. Kumagai, X. Wang, and N. Yoshimura, 'Thermal Aging, Water Absorption, and Their Multiple Effects on Tracking Resistance of Epoxy for Outdoor Use', Electr. Eng. JPN, 118-A, 1255 (2000)
  7. C. Bockenheimer, D. Fata, and W. Possart, 'New Aspects of Aging in Epoxy Networkd. I. Thermal Aging', J. Appl. Polym. Sci., 91, 361 (2004) https://doi.org/10.1002/app.13092
  8. J. H. Kim, K. Y. Choi, H. J. Joo, F. L. Jin, and S. J. Park, 'A Study on the Water Resistance and Thermo-mechanical Behaviors of Epoxy Adhesives', Elastomer, 40, 166 (2005)
  9. A. M. Matawie and E. M. Sadek, 'Adhesives and Coatings Based on Phenolic/epoxy Resins', Polym. Adv. Technol., 10, 223 (1999) https://doi.org/10.1002/(SICI)1099-1581(199904)10:4<223::AID-PAT865>3.0.CO;2-7
  10. J. Lukaszczyk and K. Jaszcz, 'Synthesis and Characteristics of Biodegradable Epoxy-Polyester Resins Cured with Glutaric Anhydride', Macromol. Chem. Phys., 230, 301 (2002)