Natural Rubber-Clay Nanocomposites by Latex Method : Morphology and Mechanical Properties

라텍스법에 의한 천연고무-클레이 나노 복합재료: 모폴로지와 기계적 물성

  • Kim, W.H. (Department of Chemical Engineering, Pusan National University) ;
  • Kang, J.H. (Department of Chemical Engineering, Pusan National University) ;
  • Kang, B.S. (Department of Chemical Engineering, Pusan National University) ;
  • Cho, U.R. (Department of Applied Chemical Engineering, Korea University of Technology and Education)
  • 김원호 (부산대학교 화학공학과) ;
  • 강종협 (부산대학교 화학공학과) ;
  • 강병석 (부산대학교 화학공학과) ;
  • 조을룡 (한국기술교육대학교 응용화학공학과)
  • Published : 2006.03.30

Abstract

In this study, modified DA-MMT filled NR/DA-MMT nanocomposites were manufactured by a latex method and a compounding method. Cure characteristics and mechanical properties of the Cloisite 15A, carbon black, Na-MMT filled NR compounds and the DA-MMT filled NR compound by a latex method were also evaluated. The filler content of all compounds was 10phr except the carbon black filled compound. Degree of intercalation and dispersion was characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). According to the XRD diffraction pattern and TEM analysis, extensive intercalation and homogeneous dispersion of the clay were obtained after the two-roll milling. Although the layer distance was increased, some parts of DA-MMT showed the layer distance of Na-MMT after vulcanization. DA-MMT filled NR compounds showed the highest ODR torques, tensile strength, modulus, and tear energy. The NR/DA-MMT nanocomposite (by a latex method) compared with a NR/DA-MMT nanocomposite (by a compounding method) was found that the improvement of the mechanical properties was mainly due to the degree of dispersion of the clay.

본 연구에서는 컴파운딩법 (compounding method)과 라텍스법 (latex method)을 이용하여 dodecylamine으로 유기화한 MMT(DA-MMT)로 보강된 천연고무-클레이 나노 복합재료를 제조하였다. 또한 Cloisite 15A, carbon black, Na-MMT 충전 배합고무와 라텍스법 (latex method)을 이용한 DA-MMT 충전 배합고무의 가황 특성 및 기계적 물성을 비교하였다. 카본블랙을 제외한 모든 충전제의 함량은 10 phr로 고정하였다. XRD 패턴을 분석한 결과 롤밀 작업 후에 가장 많은 삽입과 박리가 이루어져 NR/DA-MMT 나노 복합재료에서는 DA-MMT의 전체 silicates layer가 $13{\sim}14$층에서 $2{\sim}3$층의 silicates의 형태로 박리된 것을 확인할 수 있었다. 하지만, 가교 과정에서의 높은 열과 압력으로 인해 일부 유기화제가 빠져나감으로써 층간 거리가 감소된 DA-MMT도 존재하였다. 이는 TEM 결과에서도 확인할 수 있었다. 가교도의 경우 NR/Cloisite 15A 컴파운드가 가장 높은 값을 나타내었다. 하지만 가황 특성에서 동일 함량의 충전제가 첨가된 고무의 가황 특성을 비교하면, NR/DA-MMT 컴파운드가 가장 높은 ODR 토크 값을 나타내었고, 또한 가장 높은 인장 강도, 모듈러스 및 인열강도를 나타냄을 확인할 수 있었다. 이러한 기계적 물성 증가는 가교도의 증가 효과보다 나노 크기로 분산된 DA-MMT의 우수한 보강 효과 때문이다. 또한 혼합 방법을 달리한 NR/DA-MMT 나노 복합재료(컴파운딩법) 대비 NR/DA-MMT 나노 복합재료(라텍스법)가 클레이의 박리정도 및 분산도의 차이로 인해 높은 모듈러스, 인장강도 및 인열강도를 나타냄을 확인할 수 있었다

Keywords

References

  1. R. A. Vaia, H. Ishii, and E. P. Giannelis, 'Synthesis and Properties of Two-dimensional Nanostructures by Direct Intercalation of Polymer Melts in Layered Silicates', Chem. Mater., 5, 1694 (1993) https://doi.org/10.1021/cm00036a004
  2. A. Okamoto and A. Usuki, 'The Chemistry of Polymer-Clay Hybrids', Mater. Sci. Eng., 3, 109 (1995) https://doi.org/10.1016/0928-4931(95)00110-7
  3. T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, 'Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites', Chem. Mater., 7, 2144 (1995) https://doi.org/10.1021/cm00059a023
  4. L. Zhang, Y. Wang, Y. Sui, and D. Yu, 'Morphology and Mechanical Properties of Clay/Styrene-Butadiene Rubber Nanocomposites', J. Appl. Polym. Sci., 78, 1873 (2000) https://doi.org/10.1002/1097-4628(20001209)78:11<1873::AID-APP40>3.0.CO;2-8
  5. M. Pramanik, S, K. Srivastsva, B. K. Samantaray, and A. K. Bhowmick, 'Rubber-Clay Nanocomposite by Solution Blending', J. Appl. Polym. Sci., 87, 2216 (2003) https://doi.org/10.1002/app.11475
  6. Y. Wang, L. Zang, C. Tang, and D. Yu, 'Preparation and Characterization of Rubber-Clay Nanocomposite', J. Appl. Polym. Sci., 78, 1879 (2000) https://doi.org/10.1002/1097-4628(20001209)78:11<1879::AID-APP50>3.0.CO;2-1
  7. R. E. Grim, 'Clay Mineralogy', McGraw-Hill, New York, 1968
  8. S. Joly, G. Garnaud, R Ollitrault, L. Bokobza, and J. E. Mark, 'Organically Modified Layered Silicates as Reinforcing Fillers for Natural Rubber', Chem. Mater., 14, 4202 (2002) https://doi.org/10.1021/cm020093e
  9. T. Ryo, N. Kensuke, and C. Yoshiki, 'Synthesis of Poly(N,N-dimethylacrylamide)/silica Gel Polymer Hybrids by in situ Polymerization Method', Polymer, 30, 60 (1998) https://doi.org/10.1295/polymj.30.60
  10. S. Varghese and J. Karger-Kocsis, 'Melt-Compounded Natural Rubber Nanocomposites with Pristine and Organophilic Layered Silicates of Natural and Synthetic Origin', J. Appl. Polym. Sci., 91, 813 (2004) https://doi.org/10.1002/app.13173
  11. Y-P Wu, Q-X Jia, D-S Yu, and L-Q Zhang, 'Structure and Properties of Nitrile Rubber (NBR)- Clay Nanocomposites by Co-coagulating NBR Latex and Clay Aqueous Suspension', J. Appl. Polym. Sci., 89, 3855 (2003) https://doi.org/10.1002/app.12568
  12. E. Hackett, E. Manias, and E.P. Giannelis, 'Molecular Dynamics Simulations of Organically Modified Layered Silicates', J. Phys. Chem., 108, 7410 (1998) https://doi.org/10.1063/1.476161
  13. R. Fan, Y. Zang, and C. Huang, 'Effect of Crosslink Structures on Dynamic Mechanical Properties of Natural Rubber', J. Appl. Polym. Sci., 81, 710 (2001) https://doi.org/10.1002/app.1407
  14. T. D. Fornes, P. J. Yoon, H. Kekkula, and D. R. Paul, 'Nylon 6 Nanocomposites: The Effect of Matrix Molecular Weight', Polymer, 42, 9929 (2001) https://doi.org/10.1016/S0032-3861(01)00552-3
  15. S. Wolff and J. B. Donnet, 'Characterization of Fillers in Vulcanizates According to The EinsteinGuth-Gold Equation', Rubber Chem. Technol., 63, 32 (1990) https://doi.org/10.5254/1.3538240
  16. J.-Y. Lee, H.-R. Rim, M.-J. Shim, and H.-K. Lee, 'Characteristics of Natural Bentonite Used for Nanocompositcs'. J. Kor. Ind. Eng. Chem., 14, 769 (2003)
  17. J. B. Donnet, 'Black and White Fillers and Tire Compound', Rubber Chem. Technol., 71, 323 (1998) https://doi.org/10.5254/1.3538488
  18. B. B. Boonstra, 'Role of Particulate Fillers in Elastomer Reinforcement: A Review', Polymer, 20, 691 (1979) https://doi.org/10.1016/0032-3861(79)90243-X