Influence of Surface Functionalized Waste Tire Ponder on the Thermal and Rheological Properties of Polypropylene/Waste Tire Powder Composite

표면기능화된 폐타이어 분말이 PP/폐타이어분말 복합체의 열 및 유변학적 성질에 미치는 영향

  • Ryu, Sung-Hun (College of Environment and Applied Chemistry, Kyung Hee University) ;
  • Shanmugharaj, A.M. (College of Environment and Applied Chemistry, Kyung Hee University) ;
  • Kim, Jin-Kuk (Department of Polymer Science and Engineering Gyeongsang National University) ;
  • Ryu, Sung-Hun (Department of Polymer Science and Engineering Gyeongsang National University)
  • 류승훈 (경희대학교 환경응용화학대학) ;
  • ;
  • 이성효 (경상대학교 고분자공학과) ;
  • 김진국 (경상대학교 고분자공학과)
  • Published : 2006.03.30

Abstract

The waste tire powder is modified with allylamine in the presence of ultraviolet radiation and the influence of surface modification on the thermal and rheological properties of polypropylene/waste tire powder composites was investigated. X-ray diffraction studies of PP/waste tire powder composite without compatibilizer, such as maleic anhydride-g-polypropylene (MA-PP), shows the increase in peak intensity of ${\beta}$ crystalline peaks, whereas it completely disappears in the presence of the MA-PP. Differential scanning calorimetry results further supported the above fact. The melt viscosities and storage modulus of the composites with modified waste tire powder show higher value than that of composites with unmodified powder and it is attributed to the interaction between amine group on modified powder surface and maleic anhydride of MA-PP.

Allylamine을 이용하여 UV하에서 폐타이어 분말을 개질하였으며, 이를 이용한 PP/폐타이어분말 복합체의 열적, 유변학적 성질을 분석하였다. X-ray 분석결과 무수말레 산이 그라프트된 폴리프로필렌과 같은 상용화제가 없는 경우 ${\beta}$ 결정의 피크 강도가 증가한 반면 상용화제가 있는 경우 완전히 없어짐을 알 수 있었으며, DSC 결과에서도 이를 확인할 수 있었다. 개질된 폐타이어 분말을 함유한 복합체의 용융점도와 탄성모듈러스는 개질되지 않은 분말을 함유한 복합체 보다 높은 값을 나타내었으며, 이는 개질된 분말 표면의 아민기와 말레이산이 그라프트된 PP의 상호작용에 기인하는 것으로 판단된다.

Keywords

References

  1. J.K. Kim and R.P. Burford, 'Study on powder utilization of waste tires as a filler in rubber compounding', Rubber Chem. Technol., 71, 1028 (1998) https://doi.org/10.5254/1.3538508
  2. S.K. De and A.K. Bhowmick, 'Thermoplastic elastomers from rubber-plastic blends', Ellis Horwood, 1990
  3. J. Karger-Kocsis, 'Polymer blends and alloys', ed. by G.O. Shonaike and G.P. Simon, p. 125, Marcel Dekker, New York, 1999
  4. E.L. McInnis, B.D. Bauman and A. Williams, 'Higher modulus compositions incorporating particulate rubber', U.S. Patent 5506283 (1996)
  5. B. Adhikari, D. De and S. Maiti, 'Reclamation and recycling of waste rubber', Prog. Polym. Sci., 25(7), 909 (2000) https://doi.org/10.1016/S0079-6700(00)00020-4
  6. C. Peter, 'Free radicals in diene polymers induced by ultraviolet irradiation I, An ESR study of cis-1 ,4-polt(isoprene)', Rubber Chem. Technol., 45 (4), 918 (1972) https://doi.org/10.5254/1.3542898
  7. K.I. Lee and S.H. Ryu, 'Ultraviolet Photo grafting reaction of acrylamide onto styrene-butadiene rubber', Elastomer, 33, 363 (1998)
  8. J.J. Yu and S.H. Ryu, 'Ultraviolet-initiated photografting of glycidyl methacrylate onto styrene-butadiene rubber', J. Appl. Polym. Sci., 73 (9), 1733 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990829)73:9<1733::AID-APP14>3.0.CO;2-J
  9. A.M. Shanmugharaj, J.K. Kim and S.H. Ryu, 'UV surface modification of waste tire powder: Characterization and its influence on the properties of polypropylene/waste powder composites', Polymer testing, 24, 739 (2005) https://doi.org/10.1016/j.polymertesting.2005.04.006
  10. S. Hambir, N. Bulakh and J.P. Jog, 'Polypropylene/Clay nanocomposites: Effect of compatibilizer on the thermal, crystallization and dynamic mechanical behavior' Polym. Eng. Sci., 42, 1800 (2002) https://doi.org/10.1002/pen.11072
  11. R.A. Kalgaonkar and J.P. Jog, 'Copolyester/layered silicate nanocomposites: The effect of the molecular size and molecular structure of the intercalant on the structure and viscoelastic properties of the nanocomposites', J. Polym. Sci., Part B: Polym. Phys., 41, 3102 (2003) https://doi.org/10.1002/polb.10616
  12. P.W. Zhu and G. Edward, 'Studies of Injection-Molded Isotactic Poly(propylene) by Synchrotron WAXD/SAXS: Effects of Nucleating Agent on Morphological Distribution' Macromol. Mater. Eng., 288, 301 (2003) https://doi.org/10.1002/mame.200390025
  13. F. Perrin-Sarazin, M.T. Ton-That and J.B. Denault, 'Micro- and nano-structure in polypropylene/clay nanocomposites', Polymer, 46, 11624- (2005) https://doi.org/10.1016/j.polymer.2005.09.076
  14. J.X. Li and W.L. Cheung, 'On the deformation mechanisms of $\beta$-polypropylene: I. Effect of necking on $\beta$-phase PP crystals', Polymer, 39, 6935 (1998) https://doi.org/10.1016/S0032-3861(98)00144-X
  15. J.X. Li, W.L. Cheung and D. Jia, 'A study on the heat of fusion of $\beta$-polypropylene', Polymer, 40, 1219(1999) https://doi.org/10.1016/S0032-3861(98)00345-0
  16. A. Turner-Jones, J.M. Aizlewood and D.R. Beckett, 'Crystalline forms of isotactic polypropylene', Makromol Chem., 75, 134 (1964) https://doi.org/10.1002/macp.1964.020750113
  17. J. Varga and J. Karger-Kocsis, 'Rules of super- molecular structure formation in sheared isotactic polypropylene melts', J. Polym. Sci. Polym. Phys., 34(4), 657 (1996) https://doi.org/10.1002/(SICI)1099-0488(199603)34:4<657::AID-POLB6>3.0.CO;2-N
  18. C.M. Wu, M. Chen and J. Karger-Kocsis, 'The role of metastability in the micromorphologic features of sheared isotactic polypropylene melts', Polymer, 40(15), 4195 (1999) https://doi.org/10.1016/S0032-3861(98)00682-X
  19. J.P. Trotignon and J. Verdu, 'Skin-core structurefatigue behavior relationships for injection-molded parts of polypropylene. I. Influence of molecular weight and injection conditions on the morpho logy'. J. Appl. Polym. Sci., 34, 1 (1987) https://doi.org/10.1002/app.1987.070340101
  20. J. Scudla, K.J. Eichhorn, M. Raab, P. Schmidt, D. Jehnichen and L. Hausler, 'The effect of specific nucleation on molecular and supermolecular orientation in isotactic polypropylene', Macromol. Symp., 184, 371 (2002)
  21. H. Gramespacher and J. Meissner, 'Interfacial tension between polymer melts measured by shear oscillations of their blends', J. Rheol., 36, 1127 (1992) https://doi.org/10.1122/1.550304
  22. D. Graebling, R. Muller and J.F. Palieme, 'Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids', Macromolecules, 26, 320 (1993) https://doi.org/10.1021/ma00054a011
  23. J.H. Lee, M.L. Ruegg, N.P. Balsara, Y.Q. Zhu, S.P. Gido and R. Krishnamoorti, 'Phase Behavior of Highly Immiscible Polymer Blends Stabilized by a Balanced Block Copolymer Surfactant' , Macromolecules, 36, 6537 (2003) https://doi.org/10.1021/ma0340356