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ABSTRACT : The reaction of fullerene [Ceo] and 3-chloroperoxy benzoic acid in 1,2-dichlorobenzene
was monitored by high resolution ultrasonic spectroscopy and the product of reaction by fullerene
[Ceo] and 3-chloroperoxy benzoic acid in 1,2-dichlorobenzene was characterized using MALDI-TOF-MS

spectra.
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1. Introduction

High resolution ultrasonic spectroscopy is a
spectroscopic technique for material analysis utili-
zing high frequency acoustical (ultrasonic) waves
with a frequency greater than 100 kHz."? Ultrasonic
spectrometry (often named spectroscopy) in liquids
become an important tool for basic and applied
research in many scientific fields such as physics,
physical chemistry, material sciences, biology, and
medicine.”® The measurements by ultrasonic spec-
troscopy have been used successfully to monitor
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many types of phase transitions in solution.”">"”

The two major parameters measured in ultrasonic
spectrometry are the velocity and the attenuation of
the waves. Ultrasonic velocity is determined by the
density and the elasticity of the medium it travels
through. It is sensitive to intermolecular interac-
tions and composition of the sample. Ultrasonic
attenuation is determined by the energy losses in
the ultrasonic wave propagating through the sample
and is proportional to the high frequency viscosity.
Tt allows the analysis of kinetics of chemical reac-
tions. This paper shows the application of ultra-
sound techniques for the purpose of investigating
the kinetics of products which reacted with
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fullerene[Ce¢o] and 3-chloroperoxy benzoic acid in
1,2-dichlorobenzene.

II. Experimental

1. Measurement principles18

It is well known that attenuation is a good pro-
perty for characterizing dispersed phase composition
and particle size, while speed of sound is useful for
characterizing chemical compositions at a molecular
level.” The attenuation value at any particular fre-
quency has two component parts, intrinsic, @ and
excess, « 2, attenuation relating to the dispersed and
continuous phase, respectively.

@ =)+ al-g)

where ¢ is the volume fraction of the dispersed
phase. Assuming that the intrinsic attenuation re-
mains constant, the total attenuation value is pro-
portional to the concentration of insolubles.” Speed
of sound, C, is inversely proportional to the density,
o, and compressibility, ¢, of the sample;

C=1rep

This value can be correlated to the amount of
dissolved solids in the sample.14 The ability to use
a single technique to investigate the insoluble,
dissolved and total solids is one of the strengths of
diagnostic ultrasound. It's worth noting that both
these parameters vary with temperature, which must
be accounted for any calculation.

2. Experimental instrument, procedure,
and sample preparation

The ultrasonic parameters (velocity, attenuation)
were measured by a high resolution ultrasonic spec-
trometer(HR-US 101) made by Ultrasonic Scientific
Ltd (Dublin, Ireland). This instrument allows high
resolution measurement of both the velocity and the
attenuation of acoustic waves propagating through
fluids at high ultrasonic frequencies (4-14 MHz)."'
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It provides fast and non-destructive analysis of a
wide spectrum of properties of materials in fluids.
Measurement was done at single frequency (at 5.1
MHz) at 25C.

Temperature of sample and reference cells was
controlled with an accuracy of +0.01 K. Prior to
each experiment, the test solution was transferred
into the sample cell using positive pressure pipette.
1,2-dichlorobenzene was also filled to the reference
cell using a plastic pipette. Care was taken to
prevent generating air bubbles inside the cell during
the transfer process. Both cells were tightly capped
and allowed to reach thermal equilibrium at set
temperature for at least 10 min prior to a mea-
surement. After each experiment, the sample cell
was thoroughly cleaned several times with 1,2-dich-
lorobenzene and air-dried. Stock solutions of
fullerene [Ceo] in 1,2-dichlorobenzene (I mg/g)
were prepared by mixing of fullerene [Ceo] powder
and 1,2-dichlorobenzene. 3-chloroperoxy benzoic
acid powder was mixed with 1,2-dichlorobenzene
giving a total concentration of 40 mg/g. Prepared
solution was cloudy, but it was stable without visible
particles or sediment.

Small amount of 3-chloroperoxy benzoic acid
stock solution was added to preweighted amount of
fullerene [Ceo] stock solutions to obtain final con-
centration: 5 mg/g of 3-chloroperoxy benzoic acid/
1,2-dichlorobenzene and 0.88 mg/g of fullerene
[Ceo]/1,2-dichlorobenzene in sample. Prepared sam-
ple (after mixing for 1 min) was added to sample
chamber of HR-US and reference was filled with
1,2-dichlorobenzene. Ultrasonic velocity and atte-
nuation in loaded samples(mixtures) were monitored
continuously up to 24 hr at 25°C in a frequency at
5.1 MHz.

M. Results and Discussion

High resolution ultrasonic spectroscopy has
proven to be valueable tool in the characterization
of nanomaterial by reaction of fullerene[Ceo] and
3-chloroperoxy benzoic acid in 1,2-dichlorobenzene.
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Figure 1. High resolution ultrasonic spectra of the reaction between fullerene[Csy] and 3-chloroperoxy benzoic acid in
1,2-dichlorobenzene at 25°C; a-Velocity %s, b-attenuationl/m, c-reference(from Ohr to 24hr).

As shown in Figure 1, reactions of two stage are
detected in fullerene[Ce] and 3-chloroperoxy ben-
zoic acid. The reaction of first stage shows fast
change from 0 hr to 3 hr, second stage shows slow
change from 3 hr to 24 hr. It is demonstrated that
the measurements of both velocity and attenuation
has sufficient accuracy and precision. The change
of ultrasonic velocity and attenuation represent the
interaction of fullerene[Ceo] and 3- chloroperoxy
benzoic acid in 1,2-dichlorobenzene. Ultrasonic
velocity decreases during the reaction as a result of
increase of density of product. The change in
velocity which is directly related to the change in
chemical composition of the solution is found to be
inversely proportion to the concentration from
reactants to products in the reaction by the time with
fullerene [Ceo] and 3- chloroperoxy benzoic acid in
1,2-dichlorobenzene. The change in attenuation is
found to be directly proportion to the changed
concentration from reactants to products in the

reaction with fullerene [Ceo] and 3-chloroperoxy
benzoic acid in 1,2-dichlorobenzene. The magnitude
of decrease in phase velocity is observed in Cso and
3-chloroperoxy benzoic acid system (e.g. -1.8 cm/s
at 5.1 MHz), while the magnitude of increase in
attenuation also is observed in Ce and 3-chloro-
peroxy benzoic acid (e.g. 0.24 1/m at 5.1 MHz).
Ultrasonic attention increases during the reaction as
a result of a decrease of density of reactant. This
can be explained by aggregation of fullerene [Ceo]
and 3-chloroperoxy benzoic acid and the increase
in the attenuation can be attributed to the floccu-
lation dispersed solution by the reaction of
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Figure 2. MALDI-TOF-MS spectra of the reaction between fullerene[Ceso] and 3-chloroperoxy benzoic acid in
1,2-dichlorobenzene at 25 ‘C; (@) product of reaction from 0 hr to 3 hr, Ceo(O)n 0=1~5. (b} product of reaction from 3
hr to 24 hr, Cs(O) n=1~10.
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fullerene[Ceo] and 3-chloroperoxy benzoic acid in
1,2-dichlorobenzene. The reaction steps is proposed
as following scheme.

The products of reaction by the fullerene[Cg] and
3-chloroperoxy benzoic acid at room temiperature
are formed Ce(On n=1~5 from 0 hr to 3 hr,
Coo(O)n n=1~10 from 3 hr to 24 hr, which were
observed by MALDI-TOF-MS spectra in Figure 2.

IV. Conclusion

High resolution ultrasonic spectroscopy has been
proven to be valueable tool in the characterization
of nanomaterial by reaction of fullerene[Ceo] and
3-chloroperoxy benzoic acid in 1,2-dichlorobenzene.
The two stage reactions are detected in the reaction
of fullerene [Ceo] and 3-chloroperoxy benzoic acid
in 1,2-dichlorobenzene. A steep slope means a fast
change of reaction in ultrasonic parameters as seen
at the first stage within the first 3 hr after mixing,
but at the second stage, a gentle slope means a slow
change of reaction in ultrasonic values after 3 hr
to 24 hr in Figure 1.

The change in velocity which is directly related
to the change in chemical composition of the
solution is found to be inversely proportion to the
changed concentration from reactants to products in
the reaction by the time with fullerene [Ceg] and
3-chloroperoxy benzoic acid in 1,2-dichlorobenzene.
The change in attenuation is found to be directly
proportion to the changed concentration from reac-
tants to products in the reaction with fullerene [Ceol
and 3-chloroperoxy benzoic acid in 1,2-dichlo-
robenzene. The products of reaction are formed Cgo
(O)a n=1~5 from 0 hr to 3 hr, Cg (O)y n=1~10 from
3 hr to 24 hr, which were observed by MALDI-
TOF-MS spectra.
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