DOI QR코드

DOI QR Code

Benthic Environment and Macrofaunal Community Changes During the Dike Construction in Saemangeum Subtidal Area, Korea

새만금 방조제공사로 인한 조하대 환경과 저서동물 군집 변화

  • An, Soon-Mo (Division of Earth Environmental System, Pusan National University) ;
  • Lee, Jae-Hac (Marine Environment Research Department, KORDI) ;
  • Woo, Han-Jun (Marine Environment Research Department, KORDI) ;
  • Koo, Bon-Joo (Marine Environment Research Department, KORDI) ;
  • Lee, Hyung-Gon (Marine Environment Research Department, KORDI) ;
  • Yoo, Jae-Won (Korea Institute of Coastal Ecology, Inc., Department of Oceanography, Inha University) ;
  • Je, Jong-Gil (The National Assembly of the Republic of Korea)
  • 안순모 (부산대학교 지구환경시스템학부) ;
  • 이재학 (한국해양연구원 해양환경연구본부) ;
  • 우한준 (한국해양연구원 해양환경연구본부) ;
  • 구본주 (한국해양연구원 해양환경연구본부) ;
  • 이형곤 (한국해양연구원 해양환경연구본부) ;
  • 유재원 (인하대학교 해양과학과 한국연안환경생태연구소) ;
  • 제종길 (대한민국국회)
  • Published : 2006.12.31

Abstract

The Saemangeum project is one of the biggest reclamation efforts in Korea and may cause coastal ecosystem change due to altered environments and habitat loss. Since February 2002, benthic environment and community structure in the Saemangeum studied area were studied to assess the influence of the project on macrofaunal community. The result of seasonal study from February, 2002 to August 2005 is reported here. Overall, changes of species numbers and dominant species of benthic animals in the periods before (1988) and after $(2002{\sim}2005)$ the Saemangeum dike construction were not evident both inside and outside the dike. However, local environmental and community change were noted The partial completion of Saemangeum dike $(4^{th}\;dike)$ in June 2003 altered water circulation and sediment deposition patterns both inside and outside the dike. Fine sediment was accumulated inside and outside the $4^{th}$ dike while coarse sediment dominated near the main channel (Sinsi gate). Benthic community resl)ended to the altered sediment type in these areas. Species number and diversity in both site was low compared to other sites. The dominant species in these areas were composed of the benthos that had not commonly occurred in the Saemangeum subtidal area.

Keywords

References

  1. 박흥식, 임현식, 홍재상. 2000. 천수만 조하대 연성저질의 저서환경과 저서동물 군집의 시.공간적 양상. 한국수산학회지, 33(3), 262-271.
  2. 심재형, 박수영, 조병철, 이윤호. 1995. 만경.동진강 염하구에서 섬모충류에 의한 박테리아 섭식에 관하여. 한국해양학회지, 30(5), 426-435.
  3. 안순모, 고철환. 1992. 서해 만경동진 조간대의 환경과 저서동물 분포. 한국해양학회지, 27(1), 78-90.
  4. 임현식, 최진우. 1998. 경기만 대부도 주변 조하대 해역의 저서동물군집. 한국수산학회지, 31(4), 453-462.
  5. 한국해양연구소. 1995. 해양 저서생물상에 의한 환경평가-해양환경 관리 기술 보고서. 환경부, 과학기술처. 339 p.
  6. 해양수산부. 2001. 갯벌 생태계 조사 및 지속 가능한 이용방안 연구. 한국해양연구원, BSPM 118-00-1370-3. 1214 p.
  7. 해양수산부. 2003. 새만금 해양환경보전 대책을 위한 조사연구(1차년도) - 해양생태계/적조. 한국해양연구원, BSPM 139-01-1514-1. 350 p.
  8. 해양수산부. 2004. 새만금 해양환경보전대책을 위한 조사연구(3차년도) - 유용저서생물자원 관리 및 이용 분야. 한국해양연구원, BSPM 26007-1687-3. 228 p.
  9. 해양수산부. 2005. 새만금 해양환경보전대책을 위한 조사연구(3차년도) 평가예측.분야. 한국해양연구원, BSPM 26001-1691-2. 205 p.
  10. 해양수산부. 2006. 새만금 해양환경보전대책을 위한 조사연구(3차년도) 연안해저지형변화 예측 및 관리 방안. 한국해양연구원, BSPM 32007-1764-5. 487 p.
  11. 해양수산부. 2002. 해양환경공정시험법. 해양수산부. 389 p.
  12. 환경영향분과조사단. 2000. 새만금사업 환경영향공동조사 결과보고서(환경영향평가분야). 432 p.
  13. Blanchard, A.L. and H.M. Feder. 2003. Adjustment of benthic fauna following sediment disposal at a site with multiple stressors in Port Valdez, Alaska. Mar. Pollut. Bull., 46, 1590-1599. https://doi.org/10.1016/S0025-326X(03)00325-4
  14. Boesch, D.F., M.L. Wass, and R.W. Virnstein. 1976. The dynamics of estuarine benthic communities. p. 177-196. In: Estuarine Processes. Vol. 1. ed. by M.L. Wiley. Academic Press, New York.
  15. Bray, J.R. and J.T. Curtis. 1967. An ordination of upland forest communities of southern Wisconsin. Ecol. Monogr., 27, 325-349. https://doi.org/10.2307/1942268
  16. Choi, J.W. and C.H. Koh. 1992. The distribution and feeding guilds of the Polychaete Community in the west coast off Kunsan Korea. J. Oceanol. Soc. Kor., 27(3), 197-209.
  17. Choi, J.W. and C.H. Koh. 1994. Macrobenthos community in Keum-Mankyung-Dongjin estuaries and its adjacent coastal region, Korea. J. Oceanol. Soc. Kor., 29(3), 304-318.
  18. Diaz, R.J., R.J. Newbauer, L.C. Schaffner, L. Phil, and S.P. Baden. 1992. Continuous monitoring of dissolved oxygen in an estuary experiencing periodic hypoxia and the effect of hypoxia on macrobenthos and fish. p. 1055-1068. In: Marine Coastal Eutrophication. ed. by R.A. Vollenweider, R. Marchetti, and R. Viviani. Elsevier, Amsterdam.
  19. Hyland, J.L. and H. Costa. 1994. Examining linkages between contaminant inputs and their impacts on living marine resources of the Massachusetts Bay ecosystem through application of the sediment quality triad method. Draft Final Report for the Massachusetts Bays Program, Boston, MA. 86 p. + 5 appendices.
  20. Hyland, J.L., T.J. Herlinger, T.R. Snouts, A.H. Ringwood, R.F. Van Dolah, C.T. Hackney, G.A. Nelson, J.S. Rosen, and S.A. Kokkinakis. 1996. Environmental quality of estuaries of the Carolinian Province: 1994. Annual statistical summary for the 1994 EMAP - Estuaries Demonstration Project in the Carolinian Province. NOAA Technical Memorandum NOSORCA 97. NOAA/NOS, Office of Ocean Resources Conservation and Assessment. Silver Spring, MD. 102 p.
  21. Lianso, R.J. 1992. Effects of hypoxia on esturaine benthos: the lower Rappahannock River (Chesapeak Bay), a case study. Estuar. Coast. Shelf. Sci., 35, 491-515. https://doi.org/10.1016/S0272-7714(05)80027-7
  22. Sanders, H.L. 1968. Marine benthic diversity: A comparative study. Am. Nat., 102, 243-282. https://doi.org/10.1086/282541
  23. Simboura, N., A. Zenetus, P. Panayotides, and A. Makra. 1995. Changes in benthic community structure along an environmental pollution gradient. Mar. Pollut. Bull., 30, 470-474. https://doi.org/10.1016/0025-326X(95)00237-H
  24. Tunnicliffe, V. and M.J. Risk. 1977. Relationship between the bivalve Macoma balithica and bacteria in intertidal sediments: Minas Basin, Bay of Fundy. J. Mar. Res., 35, 499-507.
  25. Weston, D.P. 1990. Quantitative examination of macrobenthic community changes along an organic enrichment gradient. Mar. Ecol. Prog. Ser., 61, 233-244. https://doi.org/10.3354/meps061233
  26. Whitlatch, R.B. 1981. Animal-sediment relationship in intertidal marine benthic habitats: Some determinatnts of deposit-feeding species diversity. J. Exp. Mar. Biol. Ecol., 53, 31-45. https://doi.org/10.1016/0022-0981(81)90082-4
  27. Wu, R.S.S. 2002. Hypoxia: from molecular responses to ecosystem responses. Mar. Pollut. Bull., 45, 35-45. https://doi.org/10.1016/S0025-326X(02)00061-9

Cited by

  1. Nitrogen Removal Via Sediment Denitrification and Its Seasonal Variations in Major Estuaries of South Coast of Korean Peninsula vol.16, pp.2, 2011, https://doi.org/10.7850/jkso.2011.16.2.081
  2. Classifications of Ecological Districts for Estuarine Ecosystem Restoration; Examples of Goseong Bay Estuaries, South sea, Korea vol.16, pp.2, 2011, https://doi.org/10.7850/jkso.2011.16.2.070
  3. Macrozoobenthos of Korean tidal flats: A review on species assemblages and distribution vol.102, 2014, https://doi.org/10.1016/j.ocecoaman.2014.07.019
  4. Hard science is essential to restoring soft-sediment intertidal habitats in burgeoning East Asia vol.168, 2017, https://doi.org/10.1016/j.chemosphere.2016.10.136
  5. A Study on Meiofauna Community in the Subtidal Sediment outside of the Saemangeum Seadike in the West Coast of Korea vol.36, pp.3, 2014, https://doi.org/10.4217/OPR.2014.36.3.209
  6. An ecological study on subtidal macrobenthos inside and outside of Saemangeum dike vol.28, pp.4, 2014, https://doi.org/10.13047/KJEE.2014.28.4.442
  7. A Knowledge-based Approach for the Estimation of Effective Sampling Station Frequencies in Benthic Ecological Assessments vol.16, pp.3, 2011, https://doi.org/10.7850/jkso.2011.16.3.147
  8. Temporal Variations in the Sedimentation Rate and Benthic Environment of Intertidal Surface Sediments around Byeonsan Peninsula, Korea vol.43, pp.6, 2010, https://doi.org/10.5657/kfas.2010.43.6.723
  9. Invertebrates fauna in the intertidal regions of Yubudo Island, South Korea vol.8, pp.1, 2015, https://doi.org/10.1016/j.japb.2015.01.007
  10. Avifauna at Spring season in Yubudo island, Korea vol.3, pp.4, 2010, https://doi.org/10.1016/S1976-8648(14)60025-6
  11. The Saemangeum tidal flat: Long-term environmental and ecological changes in marine benthic flora and fauna in relation to the embankment vol.102, 2014, https://doi.org/10.1016/j.ocecoaman.2014.07.020
  12. Application of a Conceptual Ecological Model to Predict the Effects of Sand Mining around Chilsan Island Group in the West Coast of Korea vol.53, pp.3, 2018, https://doi.org/10.1007/s12601-018-0042-y