DOI QR코드

DOI QR Code

Determination of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) in human urine by solid-phase extraction and GC/MS

고체상 추출과 GC/MS를 이용한 소변 중 대마 대사체 (THCCOOH) 분석

  • Cheong, Jae Chul (Drug Analysis Laboratory, Forensic Science Division, Supreme Prosecutors' Office) ;
  • Kim, Jin Young (Drug Analysis Laboratory, Forensic Science Division, Supreme Prosecutors' Office) ;
  • In, Moon Kyo (Drug Analysis Laboratory, Forensic Science Division, Supreme Prosecutors' Office) ;
  • Cheong, Won Jo (Department of Chemistry, Inha University)
  • Received : 2006.05.11
  • Accepted : 2006.08.28
  • Published : 2006.10.28

Abstract

11-nor-9-carboxy-${\Delta}^9$-tetrahydrocannabinol (THCCOOH) is the major metabolite of tetrahydrocannabinol (THC) which is the primary psychoactive component of marijuana. It is also the target analyte for the discrimination marijuana use. A method using solid-phase extraction (SPE) and gas chromatography/mass spectrometry (GC/MS) was developed for the determination of THCCOOH in human urine. Urine samples (3 mL) were extracted by SPE column with a cation exchange cartridge after basic hydrolysis. The eluents were then evaporated, derivatized, and injected into the GC/MS. The limits of detection (LOD) and quantitation (LOQ) were 0.4 and 1.2 ng/mL, respectively. The response was linear with a correlation coefficient of 0.999 within the concentration range of 1.2 (LLE 1.3)~50.0 ng/mL. The precision and accuracy were stable within 1.20% and the recovery was 83.6~90.7%. The recovery of SPE method was lower than that of liquid-liquid extraction (LLE), but there were no apparent differences in LOD, LOQ, precision and accuracy between the two methods. While SPE method is used as a very effective and rapid procedure for sample pretreatment, and clean extracts, LLE method was not suitable for the extraction procedure of THCCOOH in urine. The applicability of the method was proven by analyzing a urine samples from a marijuana abusers.

소변 중 대마 남용여부를 판별하는데 기준이 되는 tetrahydrocannabinol (THC)의 대사체 성분인 11-nor-9-carboxy-${\Delta}^9$-tetrahydrocannabinol (THCCOOH)를 고체상 추출법 (solid-phase extraction, SPE)과 가스크로마토그래피/질량분석법 (GC/MS)을 이용하여 신속하게 분석 할 수 있는 방법을 제시하였다. 본 실험은 시험관에 소변 3 mL를 취해 염기성 (pH 10) 조건에서 가수분해 한 후, 양이온교환 카트리지를 사용하여 THCCOOH 성분을 선택적으로 추출하고, 증발 건고한 다음 유도체 반응을 시켜 GC/MS로 분석하였다. 그 결과 분석방법의 검출한계 (LOD)는 0.4 ng/mL이고, 정량한계 (LOQ)는 1.2 ng/mL이였다. 검정곡선의 직선성 상관계수 ($r^2$)는 1.2 (LLE는 1.3)~50.0 ng/mL의 농도범위에서 0.999를 나타내었다. 그리고 정밀도 (precision)와 정확도 (accuracy)는 모두 ${\pm}1.20%$ 이내로 안정적이었으며, 회수율(recovery)은 83.6~90.7%로 측정되었다. 액체상 추출법 (liquid-liquid extraction, LLE)과 비교할 때, SPE 방법이 회수율은 낮았지만 검출한계, 정량한계, 정밀도 및 정확도에서는 큰 차이가 없었다. 그러나 LLE 방법은 추출과정에 시간과 노력이 많이 드는 반면, SPE 방법은 상대적으로 추출 조작이 간편하고 신속하게 추출되었으며, 추출 잔류물도 깨끗하였다. SPE를 이용한 추출방법을 다수의 대마 흡연자 소변에 적용하였을 때 기존에 사용하던 LLE 방법보다 간편하고, 신속하게 대마 대사체 분석이 가능하였다.

Keywords

References

  1. V. Rajananda, V. Navaratnam, and N. K. Nair, 'Analytical methods for the identification of the principal cannabinoid metabolite in urine', 113, V. Navaratnam Ed., National Drug Research Centre Universiti Sains, Malaysia, 1985
  2. 'TDx/TDxFLx; Cannbinoids', 10, Abbott Laboratories, U.S.A., 1994
  3. R. A. Gustafson, E. T. Moolchan, A. Barnes, B. Levine, and M. A. Huestis, J. Chromatogr., B 798, 145-154 (2003) https://doi.org/10.1016/j.jchromb.2003.09.022
  4. A. P. Mason and A. J. McBay, J. Forensic Sci., 30(3), 615-31 (1985)
  5. R. C. Baselt, 'Disposition of toxic drugs and chemicals in man', 2nd Ed., 795, Biomedical Publications, U.S.A., 1982
  6. M. Vandevenne, H. Vandenbussche, and A Verstraete, Acta. Clin. Belg., 55(6), 323-333 (2000) https://doi.org/10.1080/17843286.2000.11754319
  7. P. Kintz, D. Machart, C. Jamey, and P. Mangin, J. Anal. Toxicol., 19(5), 304-306 (1995) https://doi.org/10.1093/jat/19.5.304
  8. P. Kintz and V. Cirimele, Biomed. Chromatogr., 11, 371-376 (1997) https://doi.org/10.1002/(SICI)1099-0801(199711)11:6<371::AID-BMC685>3.0.CO;2-Y
  9. C. Staub, J. Chromatogr., B 733, 119-126 (1999) https://doi.org/10.1016/S0378-4347(99)00249-2
  10. M. A. Huestis, J. M. Mitchell, and E. J. Cone. J. Anal. Toxicol., 20(6), 441-452 (1996) https://doi.org/10.1093/jat/20.6.441
  11. M. A Elsohly and S. Feng, J. Anal. Toxicol., 22(4), 329-335 (1998) https://doi.org/10.1093/jat/22.4.329
  12. D. A. Armbruster, R. H. Schwarzhoff, E. C. Hubster, and M. K. Liserio, Clin. Chem., 39, 2137-2141 (1993)
  13. P. M. Kemp, I. K. Abukhalaf, J. E. Manno, B. R. Manno, D. D. Alford, M. E. Mcwilliams, F. E. Nixon, M. J. Fitzgerald, R. R. Reeves, and M. J. Wood, J. Anal. Toxicol., 19(5), 292-298 (1995) https://doi.org/10.1093/jat/19.5.292
  14. H. Teixeira, P. Proenca, A. Castanheira, S. Santos, M. Lopez-Rivadulla, F. Corte-Real, E. P. Marques, and D. N. Vieira, Forensic Sci. Int., 146, Suppl : S61-63 (2004) https://doi.org/10.1016/j.forsciint.2004.04.006
  15. G. M. aballero, C. D'Angelo, M. S. Fraguio, and O. T. Cenrurion, J. Chromatogr. Sci., 42(10), 540-544 (2004) https://doi.org/10.1093/chromsci/42.10.540
  16. H. Teixeira, P. Proenca, A. Verstraete, F. Corte-Real, and D. N. Vieira, Forensic Sci. Int., 150, 205-211 (2006) https://doi.org/10.1016/j.forsciint.2004.11.026
  17. M. A. Elsohly, S. Feng, W. J. Kopycki, T. P. Murply, A. B. Jones, A. Davis, and D. Carr, J. Anal. Toxicol., 21(3), 240-242 (1997) https://doi.org/10.1093/jat/21.3.240
  18. L. O'Dell, K. Rymut, G. Chaney, T. Darpino, and M. Telepchak, J. Anal. Toxicol., 21(6), 433-437 (1997) https://doi.org/10.1093/jat/21.6.433
  19. 'Forensic applications notebook', 51, Waters Corporation, U.S.A., 2001
  20. M. C. Langen, G. A. de Bijl, and A. C. Egberts, J. Anal. Toxicol., 24(6), 433-437 (2000) https://doi.org/10.1093/jat/24.6.433