DOI QR코드

DOI QR Code

Antibacterial Activity of Zein Hydrolysate with Pepsin

Pepsin에 의한 Zein 가수분해물의 항균활성

  • Kang, Yoon-Jung (Dept. of Food Science and Technology, Chungnam National University) ;
  • Yi, Sang-Duk (Nonghyup Korea Insam Research Institute, Nonghyup Korea Insam Co., LTD.) ;
  • Lee, Gyu-Hee (Dept. of Fond Science and Technology, Woosong University) ;
  • Oh, Man-Jin (Dept. of Food Science and Technology, Chungnam National University)
  • Published : 2006.02.01

Abstract

A study was carried out to produce antimicrobial peptides from zein treated with pretenses of six kinds. Among the pretenses of six kinds, zein hydrolysate treated with pepsin showed the highest antimicrobial activity. The zein hydrolysate with pepsin was fractionated with membrane filter (30,000 10,000 and 3,000 molecular weight cut-off) and antimicrobial activity was measured for each fractions. Antimicrobial activity appeared greatly in the fraction below 3,000 (molecular weight cut-off) . The fraction was re-fractionated by HPLC and substances of two peaks collected as a sample to measure antimicrobial activity. All of both peaks showed the antimicrobial activity but 1st peak exhibited a consistently higher antimicrobial activity than 2nd peak. Minimum inhibitory concentrations (MIC) were between 2.5 and 3.0 mg/mL. The peptide was heat-stable since antimicrobial activity was maintained after treated with heat for 20 min at $121^{\circ}C$. N-terminal amino acid sequence of peptide fractionated by HPLC was leucine, glutamic acid, proline, phenylalanine, aspartic acid and argenine. These results indicated that peptide isolated from zein hydrosate with pepsin can use as a natural preservative ingredient in food industry.

효소에 의한 옥수수 단백가수분해물의 천연항균제로서의 이용가능성을 조사하기 위하여 zein 단백질에 단백 가수분해 효소를 작용시켜 얻어진 가수분해물의 항균활성을 측정하고 membrane filter로 한외 여과하여 항균활성이 가장 높은 분획을 HPLC로 분취한 후 항균활성을 측정하고 MIC, 각종 세균에 대한 생육저해농도를 측정하여 다음과 같은 결과를 얻었다. Zein 단백질에 6종의 단백분해효소를 작용시켜 제조한 가수분해물 중 pepsin으로 작용시킨 것이 항균활성이 가장높았다. Membrane filter에 의하여 여과한가수분해물의 항균활성은 M.W. $10,000\~30,000$에서 가장 높았으며 $121^{\circ}C$에서 10분간 처리하여도 항균활성에 변화가 없는 열안정성이 매우 높았고 MIC는 2.5 mg/mL이었다. HPLC로 분리한 항균성 peptide의 N-말단 아미노산 조성은 leucine, glutamic acid, proline, phenylalanine, aspartic acid, argenine 순이었다. 분자량 $10,000\~30,000$의 가수분해 동결건조물을 3 mg/mL 농도로 nutrient broth 배지에 첨가하고 $37^{\circ}C$에서 배양하였을 때 크게 생육이 저해되었다.

Keywords

References

  1. Roller S. 1999. Natural antimicrobials for the minimal proc-essing of foods. Boca Raton, Boston, New York, Washington, DC. p 1-10
  2. Ahn EY, Shin DH, Baek NI, Oh JA. 1998. Isolation and identification of antimicrobial active substance from Glycyrrhiza uralensis FISCH. Korean J Food Sci Tech 30: 680-687
  3. Naidu AS. 2000. Natural Food Antimicrobial Systems. CRC press, New York, Washington, DC. p 1-11
  4. Kuwata H, Yip TT, Tomita M, Hutchens TW. 1998. Direct evidence of the generation in human stomach of an anti-microbial peptide domain (lactoferricin) from ingested lac-toferrin. Biochim Biophys Acta 80: 129-141
  5. Park CB, Kim HS, Kim SC. 1998. Mechanism of action of the antimicrobial peptide buforin. Biochem Biophys Res Commun 244: 253-257 https://doi.org/10.1006/bbrc.1998.8159
  6. Park IY, Park CB, Kim MS, Kim SC. 1998. Parasin an antimicrobial peptide derived from histone H2A in the cat fish, Parasilurus asotus. FEBS Lett 437: 258-262 https://doi.org/10.1016/S0014-5793(98)01238-1
  7. Lehrer RL, Lichtenstein AK, Ganz T. 1993. Defensins antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 11: 105-128 https://doi.org/10.1146/annurev.iy.11.040193.000541
  8. Elsbach P, Weiss J. 1993. Bactercidal/permeability increasing protein and host defense against Gram-negative bac-teria and endotoxin. Curr Opin Immunol 5: 103-107 https://doi.org/10.1016/0952-7915(93)90088-A
  9. Bevins CL, Zasloff M. 1990. Peptide from frog skin. Annu Rev Biochem 59: 395-414 https://doi.org/10.1146/annurev.bi.59.070190.002143
  10. Simmaco M, Mignogna G, Barra D, Bossa F. 1994. Anti-microbial peptides from skin secretions of Rana esculenta. J Biol Chem 269: 11956-11961
  11. Boman G. 1995. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13: 61-92 https://doi.org/10.1146/annurev.iy.13.040195.000425
  12. Hoffmann JA, Hetru C. 1992. Insect defense inducible anti-bacterial peptides. Immunol Today 13: 411-415 https://doi.org/10.1016/0167-5699(92)90092-L
  13. Casteels P, Ampe C, Jacobs F, Tempst P. 1993. Functional and chemical characterization of Hymenoptaecin, an anti-bacterial polypeptide that is infection inducible in honeybee (Apis mellifera). J Biol Chem 268: 7044-7054
  14. Osborn RW, Samblanx RW, Thevissen K, Goderis I, Torrekens S, Leuven F, Attenborough S, Rees SB, Broekaert WF. 1995. Isolation and characterisation of plant defensins from seeds of asteraceae, fabaceae, hippocasta-naceae and saxifragaceae. FEBS Lett 368: 257-262 https://doi.org/10.1016/0014-5793(95)00666-W
  15. Bangalore A, Travis J, Onunka VC, Pohl J, Shafer WM. 1990. Identification of the primary antimicrobial domains in human neutrophilcathepsin G. J Biol Chem 265: 13584-13588
  16. Pellegrini A, Thomas U, Bramaz N, Klauser S, Hunziker P, von Fellenberg R. 1996. Identification and isolation of the bactericidal domains in the preoteinase inhibitor aprotinin. Biochem Biophys Res Commun 222: 559-565 https://doi.org/10.1006/bbrc.1996.0783
  17. Pellegrini A, Thomas U, Bramaz N, Klauser S, Hunziker P, von Fellenberg R. 1997. Identification and isolation of a bactericidal domain in chicken egg white lysozyme. J Appl Bacteriol 82: 372-378 https://doi.org/10.1046/j.1365-2672.1997.00372.x
  18. Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M. 1992. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol 73: 472-479 https://doi.org/10.1111/j.1365-2672.1992.tb05007.x
  19. Pellegrini A, Thomas U, Bramaz N, Klauser S, Hunziker P, von Fellenberg R. 1999. Isolation and identification of three bactericidal domains in the bovine $\alpha$-lactalbumin molecule. Biochim Biophys Acta 1426: 439-448 https://doi.org/10.1016/S0304-4165(98)00165-2
  20. Piddok LJ. 1990. Techniques used for the determination of antibacterial resistance and sensitivity in bacteria. J Appl Bacteriol 68: 307-318 https://doi.org/10.1111/j.1365-2672.1990.tb02880.x
  21. Jang D, Park KH, Lee JR, Ha TJ, Park YB, Nam H, Yang M. 1990. Antimicrobial activities of sesquiterpene lactones isolated from Hemistptia lyreta, Chrysanthemum zawadskii and Chrysanthemum boreale. Agric Chem Biotechnol 42:176-179
  22. Amsterdam D. 1996. Susceptibility testing of antimicrobials in liquid media. In Antibiotics in laboratory medicine. Lorian V, ed. Williams & Wilkins, Baltimore. p 52-111
  23. Zucht HD, Raida M, Adermann K, Mägert HJ, Forssmann WG. 1995. Casocidin-I: a casein-alpha s2 derived peptide exhibits antibacterial activity. FEBS Lett 372: 185-188 https://doi.org/10.1016/0014-5793(95)00974-E
  24. Yi SD, Joo JH, Lee GH, Lee KT, Oh MJ. 2003. Antimicrobial activity of gluten hydrolysate with Asp. saitoi protease. J Korean Soc Food Sci Nutr 32: 745-751 https://doi.org/10.3746/jkfn.2003.32.5.745
  25. Joo JH, Yi SD, Lee GH, Lee KT, Oh MJ. 2004. Antimicrobial activity of soy protein hydrolysate with Asp. saitoi pro-tease. J Korean Soc Food Sci Nutr 33: 229-235 https://doi.org/10.3746/jkfn.2004.33.2.229