PCR-Based Detection of Mycoplasma Species

  • Sung Hyeran (College of Pharmacy, Chungbuk National University) ;
  • Kang Seung Hye (College of Pharmacy, Chungbuk National University) ;
  • Bae Yoon Jin (College of Pharmacy, Chungbuk National University) ;
  • Hong Jin Tae (College of Pharmacy, Chungbuk National University) ;
  • Chung Youn Bok (College of Pharmacy, Chungbuk National University) ;
  • Lee Chong-Kil (College of Pharmacy, Chungbuk National University) ;
  • Song Sukgil (College of Pharmacy, Chungbuk National University)
  • Published : 2006.02.01

Abstract

In this study, we describe our newly-developed sensitive two-stage PCR procedure for the detection of 13 common mycoplasmal contaminants (M. arthritidis, M. bovis, M. fermentans, M. genitalium, M. hominis, M. hyorhinis, M. neurolyticum, M. orale, M. pirum, M. pneumoniae, M. pulmonis, M. salivarium, U. urealyticum). For primary amplification, the DNA regions encompassing the 16S and 23S rRNA genes of 13 species were targeted using general mycoplasma primers. The primary PCR products were then subjected to secondary nested PCR, using two different primer pair sets, designed via the multiple alignment of nucleotide sequences obtained from the 13 mycoplasmal species. The nested PCR, which generated DNA fragments of 165-353 bp, was found to be able to detect 1-2 copies of the target DNA, and evidenced no cross-reactivity with the generated DNA of related microorganisms or of human cell lines, thereby confirming the sensitivity and specificity of the primers used. The identification of contaminated species was' achieved via the performance of restriction fragment length polymorphism (RFLP) coupled with Sau3AI digestion. The results obtained in this study furnish evidence suggesting that the employed assay system constitutes an effective tool for the disagnosis of mycoplasmal contamination in cell culture systems.

Keywords

References

  1. Ausubel, F.M., F. Katagiri, M. Mindrinos, and J. Glazebrook. 1995. Use of Arabidopsis thaliana defense-related mutants to dissect the plant response to pathogens. Proc. Natl. Acad. Sci. USA 92, 4189-4196
  2. Barile, M.F. and S. Rottem. 1993. Mycoplasmas in cell cultures. p155-193. In Kahane, and Adoni, A. Editors. Rapid diagnosis of Mycoplasmas Plenum. New York
  3. Chen, T.R. 1977. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 strain. Exp. Cell. Res. 104, 255-262 https://doi.org/10.1016/0014-4827(77)90089-1
  4. Clyde, W.A., G.E. Jr. Kenny, and J. Schachter. 1984. Cumitech 19, Laboratory diagnosis of chlamydia and mycoplasmal infections. Coordinating (ed.) WL. Drew. ASM. Washington, DC
  5. Furrer, B., U. Candrian, P. Wieland, and J. Luthy. 1990. Improving PCR efficiency. Nature 346, 324
  6. Harasawa, R. 1995. Nested PCR: Application to the detection of mycoplasmas. In Razin, S. and Tully, J.G. Editors, (1995). Molecular and Diagnostic Procedures in Mycoplasmology Vol.2 Academic Press, London
  7. Harasawa, R. and Y. Kanamoto. 1999. Differentiation of two biovars of Ureaplasma urealyticum based on the 16S-23S rRNA intergenic spacer region. J. Clin. Microbiol. 37, 4135-4138
  8. Harasawa, R., H. Mizusawa, K. Nozawa, T. Nakagawa, K. Asada, and I. Kato. 1993. Detection and tentative identification of dominant mycoplasma species in cell cultures by restriction analysis of the 16S-23S rRNA intergenic spacer regions. Res. Microbiol. 144, 489-493 https://doi.org/10.1016/0923-2508(93)90057-9
  9. Hay, R.J., M.L. Macy, and T.R. Chen. 1989. Mycoplasma infection of cultured cells. Nature 339, 487-488 https://doi.org/10.1038/339487a0
  10. Hopert, A., C.C. Uphoff, M. Wirth, H. Hauser, and H.G. Drexler. 1993. Specificity and sensitivity of polymerase chain reaction (PCR) in comparison with other methods for the detection of mycoplasma contamination in cell lines. J. Immunol. Methods 164, 91-100 https://doi.org/10.1016/0022-1759(93)90279-G
  11. Hu, M., C. Buck, D. Jacobs, G. Paulino, and H. Khouri. 1995. Application of PCR for detection and identification of mycoplasma contamination in virus stocks. In Vitro Cell. Dev. Biol. Anim. 31, 710-715 https://doi.org/10.1007/BF02634093
  12. Jurstrand M., J.S. Jensen, H. Fredlund, L. Falk, and P. Molling. 2005. Detection of Mycoplasma genitalium in urogenital specimens by real-time PCR and by conventional PCR assay. J. Med. Microbiol. 54, 23-29 https://doi.org/10.1099/jmm.0.45732-0
  13. Khanna, M., J. Fan, K. Pehler-Harrington, C. Waters, P. Douglass, J. Stallock, S. Kehl, and K.J. Henrickson. 2005. The pneumoplex assays, a multiplex PCR-enzyme hybridization assay that allows simultaneous detection of five organisms, Mycoplasma pneumoniae, Chlamydia (Chlamydophila) pneumoniae, Legionella pneumophila, Legionella micdadei, and Bordetella pertussis, and its real-time counterpart. J. Clin. Microbiol. 43, 565-571 https://doi.org/10.1128/JCM.43.2.565-571.2005
  14. Kong, F., G. James, S. Gordon, A. Zelynski, and G.L. Gilbert. 2001. Species-specific PCR for identification of common contaminant mollicutes in cell culture. Appl. Environ. Microbiol. 67, 3195-3200 https://doi.org/10.1128/AEM.67.7.3195-3200.2001
  15. Loens, K., D. Ursi, H. Goossens, and M. Ieven. 2003. Molecular diagnosis of Mycoplasma pneumoniae respiratory tract infections. J. Clin. Microbiol. 41, 4915-4923 https://doi.org/10.1128/JCM.41.11.4915-4923.2003
  16. Loens, K., D. Ursi, M. Ieven, P. van Aarle, P. Sillekens, P. Oudshoorn, and H. Goossens. 2002. Detection of Mycoplasma pneumoniae in spiked clinical samples by nucleic acid sequence-based amplification. J. Clin. Microbiol. 40, 1339-1345 https://doi.org/10.1128/JCM.40.4.1339-1345.2002
  17. Mardassi, B.B., R.B. Mohamed, I. Gueriri, S. Boughattaas, and B. Mlik. 2005. Duplex PCR to differentiate between Mycoplasma synoviae and Mycoplasma gallisepticum on the basis of conserved species-specific sequences of their hemagglutinin genes. J. Clin. Microbiol. 43, 948-958 https://doi.org/10.1128/JCM.43.2.948-950.2005
  18. McGarrity, G.J. and H. Kotani 1985. Cell culture mycoplasmas. p. 155-193. In Razin, S. and Barile, M. Editors. The Mycoplasmas Plenum, New York
  19. Nakagawa, T., T. Uemori, K. Asada, I. Kato, and R. Harasawa. 1992. Acholeplasma laidlawii has tRNA genes in the 16S-23S spacer of the rRNA operon. J. Bacteriol. 174, 8163-8165 https://doi.org/10.1128/jb.174.24.8163-8165.1992
  20. Quirk, J.T., J.M. Kupinski, and R.A. DiCioccio. 2001. Detection of Mycoplasma ribosomal DNA sequences in ovarian tumors by nested PCR. Gynecol. Oncol. 83, 560-562 https://doi.org/10.1006/gyno.2001.6446
  21. Rawadi, G. and O. Dussurget. 1995. Advances in PCR-based detection of mycoplasmas contaminating cell cultures. PCR Methods Appl. 4, 199-208 https://doi.org/10.1101/gr.4.4.199
  22. Razin, S. 1994. DNA probes and PCR in diagnosis of mycoplasma infections. Mol. Cell. Probes 8, 497-511 https://doi.org/10.1006/mcpr.1994.1071
  23. Sarkar, G. and S.S. Sommer. 1991. Parameters affecting susceptibility of PCR contamination to UV inactivation. BioTechniques 10, 590-594
  24. Song, S. and C. Park. 1997. Organization and regulation of the D-xylose operons in Escherichia coli K-12 : XylR acts as a transcriptional activator. J. Bacteriol. 179, 7025-7032 https://doi.org/10.1128/jb.179.22.7025-7032.1997
  25. Tang, J., M. Hu, S. Lee, and R. Roblin. 2000. A polymerase chain reaction based method for detecting Mycoplasma/ Acholeplasma contaminants in cell culture. J. Microbiol. Methods 39, 121-126 https://doi.org/10.1016/S0167-7012(99)00107-4
  26. Uphoff, C.C., S. Brauer, D. Grunicke, S.M. Gignac, R.A. MacLeod, H. Quentmeier, K. Steube, M. Tummler, M. Voges, B. Wagner, and H.G. Drexler. 1992. Sensitivity and specificity of five different mycoplasma detection assays. Leukemia. 6, 335-341
  27. van Kuppeveld, F.J., J.T. van der Logt, A.F. Angulo, M.J. van Zoest, W.G Quint, H.G. Niesters, J.M. Galama, and W.J. Melchers. 1992. Genus-and species-specific identification of mycoplasmas by 16S rRNA amplification. Appl. Environ. Microbiol. 58, 2606-2615
  28. Wirth, M., E. Berthold, M. Grashoff, H. Pfutzner, U. Schubert, and H. Hauser. 1994. Detection of mycoplasma contaminations by the polymerase chain reaction. Cytotechnology 16, 67-77 https://doi.org/10.1007/BF00754609
  29. Yoshida, T., S. Maeda, T. Deguchi, and H. Ishiko. 2002. Phylogeny-based rapid identification of mycoplasmas and ureaplasmas from urethritis patients. J. Clin. Microbiol. 40, 105-110 https://doi.org/10.1128/JCM.40.1.105-110.2002