Strain Improvement of Candida tropicalis for the Production of Xylitol: Biochemical and Physiological Characterization of Wild-type and Mutant Strain CT-OMV5

  • Published : 2006.02.01

Abstract

Candida tropicalis was treated with ultraviolet (UV) rays, and the mutants obtained were screened for xylitol production. One of the mutants, the UV1 produced 0.81g of xylitol per gram of xylose. This was further mutated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), and the mutants obtained were screened for xylitol production. One of the mutants (CT-OMV5) produced 0.85g/g of xylitol from xylose. Xylitol production improved to 0.87 g/g of xylose with this strain when the production medium was supplemented with urea. The CT-OMV5 mutant strain differs by 12 tests when compared to the wild-type Candida tropicalis strain. The XR activity was higher in mutant CT-OMV5. The distinct difference between the mutant and wild-type strain is the presence of numerous chlamvdospores in the mutant. In this investigation, we have demonstrated that mutagenesis was successful in generating a superior xylitol-producing strain, CT-OMV5, and uncovered distinctive biochemical and physiological characteristics of the wild-type and mutant strain, CT-OMV5.

Keywords

References

  1. Dahiya, J.S. 1991. Xylitol production by Petromyces albertensis grown on medium containing D-xylose. Can. J. Microbiol. 37, 14-18 https://doi.org/10.1139/m91-003
  2. Fran Gare. 2003. The sweet miracle of xylitol. Basic Health Publications. North Bergen, NJ
  3. Gong, C.S., L.F. Chem, and G.T. Tsao. 1983. Quantitative production of xylitol from D-xylose by a high xylitol producing yeast mutast Candida tropicalis, HXP 2. Biotechnol. Letters 3, 130-135
  4. Hyoenen, L., Koivistoninen, and H. Voirol. 1983. Food technological evaluation of xylitol. Food Research 28, 373-403
  5. Izumori, K. and K. Tuzaki. 1988. Production of xylitol from D-xylose by Mycobacterium smegmatis. J. Ferment. Technol. 66, 33-36 https://doi.org/10.1016/0385-6380(88)90126-4
  6. Jeffries, T.W., V. Yang, J. Marks, S. Amartey, W.R. Kenealy, J.Y. Cho, K. Dahn, and B.P. Davis. 1993. Development of Yeasts for Xylose Fermentation, Proceedings of 1st Biomass congress of the Americas: Energy, environment, agriculture and industry NREL/CP-200-5768 DE93010050 2, 1056-1067
  7. Jannesson, L., S. Renvert, P. Kjellsdotter, A. Gaffar, N. Nabi, and D. Birkhed. 2002. Effect of a triclosan-containing toothpaste supplemented with 10% xylitol on streptococcus mutans in saliva and dental plaque. A 6-month clinical study. Caries Research 36, 36-39 https://doi.org/10.1159/000057588
  8. Jyri-Pekka, M., S. Tapio, and S. Rainer. 2001. Effect of solvent polarity on the hydrogenation of xylose. J. Chemical Technol. Biotechnol. 76, 90-100 https://doi.org/10.1002/1097-4660(200101)76:1<90::AID-JCTB348>3.0.CO;2-E
  9. Kim, J.H., V.W. Ryu, and J.H. Seo. 1999. Analysis and optimization of a two-substrate fermentation for xylitol production using Candida tropicalis. J. Ind. Microbiol. Biotechnol. 22, 181-186 https://doi.org/10.1038/sj.jim.2900626
  10. Kim, J.H., K.C. Han, Y.H. Koh, V.W. Ryu, and J.H. Seo. 2002. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. J. Ind. Microbiol. Biotechnol. 29, 16-19 https://doi.org/10.1038/sj.jim.7000257
  11. Lachke, A.H. and T.W. Jeffries. 1986. Levels of the enzymes of the pentose phosphate pathway in Pachysolen tannophilus Y2460 and selected mutants. Enzyme Microbial. Technolol. 8, 353-359 https://doi.org/10.1016/0141-0229(86)90135-3
  12. Lu, J., B. Larry, C.S. Gong, and G.T. Tsao. 1995. Effect of nitrogen sources on xylitol production from D-xylose by Candida sp. L-102. Biotechnol. Letters 17, 167-170 https://doi.org/10.1007/BF00127982
  13. Lynch, H. and P. Milgrom. 2003. Xylitol and dental caries: an overview for clinicians. J. Calif. Dent. Assoc. 31, 205-209
  14. Mahmoud, Y.A. 1999. Effect of ethyl methane sulphonate on biomass and protein production by Candida tropicalis. Cytobios. 99, 123-128
  15. Makinen, K.K. 2000. The rocky road of xylitol to its clinical application. J. Dent. Research 79, 1352-1355 https://doi.org/10.1177/00220345000790060101
  16. Meyrial, V., J.P. Delgenes, R. Moletta, and J.M. Navarro. 1991. Xylitol production from D-Xylose by Candida guilliermondii: fermentation behavior. Biotechnol. Letters 11, 281-286
  17. Nishio, N., K. Sugawa, N. Hayase, and S. Nagai. 1989. Conversion of D-xylose into xylitol by immobilized cells of Candida peliculosa and Methanobacterium sp. HV. J. Ferment. Bioeng. 67, 356-360 https://doi.org/10.1016/0922-338X(89)90255-9
  18. Palnitkar, S. and A. Lachke. 1992. Effect of nitrogen sources on oxidoreductive enzymes and ethanol production during D-xylose fermentation by Candida shehatae. Can. J. Microbiol. 38, 258-260 https://doi.org/10.1139/m92-043
  19. Paul, A.B., P. Lynn Runnals, C.J. Douglas, and H. Lee. 1988. Induction of xylose reducatse and xylitol dehydrogenase activities in Pachysolen tannophilus and Pichia stipitis on mixed sugars. Appl. Environ. Microbiol. 54, 50-54
  20. Pepper, T. and P.M. Olinger. 1988. Xylitol in sugarfree confections. Food Technol. 10, 98-106
  21. Petsas, I., K. Psarianos, A. Bakatorou, A.A. Koutinas, I.M. Banat, and R. Marchant. 2002. Improvement of Kefir yeast by mutation with N-methyl-N-nitrosoguanidine. Biotechnol. Letters 24, 557-560 https://doi.org/10.1023/A:1014864525280
  22. Preziosi-Belloy, L., V. Nolleau, and J.M. Navarro. 2000. Xylitol production from aspenwood hemicellulose hydrolysate by Candida guilliermondii. Biotechnol. Letters 22, 239-243 https://doi.org/10.1023/A:1005688919428
  23. Schmiedel, D. and W. Hillen. 1996. A Bacillus subtilis 168 mutant with increased xylose uptake can utilize xylose as sole carbon source. FEMS Microbiol. Letters 135, 175-178 https://doi.org/10.1111/j.1574-6968.1996.tb07985.x
  24. Sirisansaneeyakul, S., M. Stanisewski, and M. Rizzi. 1995. Screening of yeasts for production of xylitol from D-xylose. J. Ferment. Bioeng. 80, 565-570 https://doi.org/10.1016/0922-338X(96)87732-4
  25. Sonderegger, M. and U. Sauer. 2003. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol. 69, 1990-1998 https://doi.org/10.1128/AEM.69.4.1990-1998.2003
  26. Sreenivas Rao, R., R.S. Prakasham, K. Krishna Prasad, S. Rajesham, P.N. Sharma, and L. Venkateswar Rao. 2004. Xylitol production by Candida sp.: parameter optimization using Taguchi approach. Process Biochem. 39, 951-956 https://doi.org/10.1016/S0032-9592(03)00207-3
  27. Suryadi, H., T. Katsuragi, N. Yoshida, S. Suzuki, and Y. Tani. 2000. Poly-ol production by culture of methanol utilizingyeast. J. Biosci. Bioeng. 89, 236-240 https://doi.org/10.1016/S1389-1723(00)88825-8
  28. Suzuki, T., Y. Miyamae, and I. Ishida. 1991. Variation of colony morphology and chromosomal rearrangement in Candida tropicalis pK233. J. Gen. Microbiol. 137, 161-167 https://doi.org/10.1099/00221287-137-1-161
  29. Tantirungkij, M., T. Izuishi, T. Seki, and T. Yoshida. 1994. Fed-batch fermentation of xylose by a fast-growing mutant of xylose-assimilating recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 41, 8-12 https://doi.org/10.1007/BF00166074
  30. Vandeska, E., S. Amartey, S. Kuzmanova, and T.W. Jeffries. 1996. Fedbatch culture for xylitol production by Candida boidinii. Process Biochem. 31, 265-270 https://doi.org/10.1016/0032-9592(95)00058-5
  31. Wahlbom, C.F., R.R.C. Otero, W.H. van Zyl, B.H. Hägerdal, and L.J. Jönsson. 2003a. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl. Environ. Microbiol. 69, 740-746 https://doi.org/10.1128/AEM.69.2.740-746.2003
  32. Wahlbom, C.F., W.H. van Zyl, L.J. Jönsson, B.H. Hägerdal, and R.R.C. Otero. 2003b. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Research 3, 319-326 https://doi.org/10.1016/S1567-1356(02)00206-4
  33. Whistler, R.L. and R.D. Bemiller. (Eds.) 1993. Hemicelluloses- In Industrial Gums, polysaccharides and their derivatives, pp. 295-308. Academic press: San Diego
  34. Winston, F. and F.M. Ausubel. 1990. Current Protocols in Molecular Biology, Supplement 12. Wiley, New York. 3.3.1-13.3.4
  35. Yoshitake, J., H. Obiwa, and M. Shimamurs. 1971. Production of polyalcohol by Corynebacterium sp. I. Production of pentitol from aldopentose. Agri. Biol. Chem. 35, 905-911 https://doi.org/10.1271/bbb1961.35.905