DOI QR코드

DOI QR Code

The Investigation of Reaction Parameters on the Reactivity in the Preparation of TiB2 by SHS

자전연소합성법에 의한 TiB2 분말의 제조에 있어 반응성에 대한 반응변수의 고찰

  • Shin, Chang-Yun (Engineering Research Center for Rapidly Solidified Materials, Chungnam National University) ;
  • Park, Young-Chul (Engineering Research Center for Rapidly Solidified Materials, Chungnam National University) ;
  • Lee, Huk-Hee (Korea Research Institute of Chemical Technology) ;
  • Nersisyan, Hayk (Engineering Research Center for Rapidly Solidified Materials, Chungnam National University) ;
  • Won, Chang-Whan (Engineering Research Center for Rapidly Solidified Materials, Chungnam National University)
  • 신창윤 (충남대학교 급속응고신소재연구소) ;
  • 박영철 (충남대학교 급속응고신소재연구소) ;
  • 이혁희 (한국화학연구원) ;
  • ;
  • 원창환 (충남대학교 급속응고신소재연구소)
  • Published : 2006.01.01

Abstract

The preparation of $TiB_2$ by SHS in $B_2O_3-Mg-TiO_2$ system was investigated in this study. In the preparation of $TiB_2$, the effect on reactivity and reaction products of the initial pressure of inert gas in reactor, the content of Mg and $TiO_2$ in mixture was investigated. The minimum initial pressure of inert gas in reactor for SHS reaction in this system was 5atm, and as the pressure increased, the concentration of unreacted Mg decreased and combustion temperature increased. At the initial inert gas pressure in reactor of 50atm, the optimum composition for the preparation of pure $TiB_2$ was $B_2O_3+5Mg+TiO_2$. The $TiB_2$ synthesized in this condition had an irregular shape and the particle size of $1\~3{\mu}m$.

Keywords

References

  1. A. P. Aldushin, A. Bayliss, and B. J. Matkowsky, 'Dynamics in Layer Models of Solid Flame Propagation,' Physica D: Nonlinear Phenomena, 143 [1-4] 109-37 (2000) https://doi.org/10.1016/S0167-2789(00)00094-4
  2. H. R. Baumgartner, 'Mechanical Properties of Densely Sintered High-Purity Titanium Diborides in Molten Aluminium Enviroment,' J. Am. Ceram. Soc., 67 490-97 (1984) https://doi.org/10.1111/j.1151-2916.1984.tb19641.x
  3. J. Kiser, 'Soviet SHS Technology: A Potential U.S. Advantage in Ceramic,' J. Am. Ceram. Bull., 68 [6] 1165-67 (1989)
  4. B. K. Yen, T. Aizawa, and J. Kihara, 'Synthesis and Formation Mechanisms of Molybdenum Silicides by Mechanical Alloying,' Mater. Sci. Eng. A, 220 [1-2] 8-14 (1996) https://doi.org/10.1016/S0921-5093(96)10430-5
  5. J. F. Crider, 'Self-Propagating High Temperature Synthesis-A Soviet Method for Producing Ceramic Materials,' Ceram. Eng. Sci. Proc., 3 [9-10] 519-28 (1982) https://doi.org/10.1002/9780470318782.ch8
  6. G. V. Samsonov and B. A. Kovenskaya, 'The Nature of the Chemical Bond in Borides,' New York, in Boron and Refractory Borides, Edited by V. I. Matkovich, Springer-Verlag, 457-93 (1977)
  7. O. Yamada, 'Studies on Combustion Synthesis and High Pressure Sintering for Non-Oxide Ceramic,' Dotoral Thesis Osaka Univ. (1989)
  8. D. A. Hoke and M. A. Meyers, 'Consolidation of Combustion-Synthesized Titanium Diboride-Based Materials,' J. Am. Ceram. Soc., 78 [2] 275-84 (1995) https://doi.org/10.1111/j.1151-2916.1995.tb08797.x
  9. B. A. Asbi and M. Cheryan, 'Optimizing Process Time for Utrafiltration and Diafiltration,' Desalination, 86 [1] 49-62 (1992) https://doi.org/10.1016/0011-9164(92)80023-3
  10. T. Suzuki, H. Makino, A. Kanatsuka, M. Osegawa, S. Yoshida, and Y. Sakamoto, 'Activation of Insulin-Sensitive Phosphodiesterase by Lectins and Insulin-Dextran Complex in Rat Fat Cells,' Metabolism, 33 [6] 572-75 (1984) https://doi.org/10.1016/0026-0495(84)90014-3
  11. M. Ouabdesselam and Z. A. Munir, 'The Sintering of Combustion Synthesized Titanium Diboride,' J. Mater., 22 1799-807 (1987) https://doi.org/10.1007/BF01132409
  12. A. G. Merzhanov and I. P. Borovinskaya 'Self-Propagated High-Temperature Synthesis of Refractory Inorganic Compounds,' Acad. Sci. USSR Chem. Phys., 204 366-69 (1972)
  13. A. G. Merzhanov, 'History and Recent Developments in SHS,' Ceram. Inter., 21 [5] 371-79 (1995) https://doi.org/10.1016/0272-8842(95)96211-7
  14. D. A. Hoke, M. A. Meyers, L. W. Meyers, and G. T. Gray III, 'Reaction Synthesis/Dynamic Compaction of Titanium Diboride,' Metal. Trans. A, 23A 77-86 (1992)
  15. L. J. Kecskes, T. Kottke, and A. Niller, 'Microstructural Properties of Combustion-Synthesized and Dynamically Consollidated Titanium Boride and Titanium Carbide,' J. Am. Ceram. Soc., 73 [5] 1274-82 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb05191.x
  16. M. Ahmad and A. K. Sheikh, 'Bernstein Reliability Model: Derivation and Estimation of Parameters,' Reliability Eng., 8 [3] 131-48 (1984) https://doi.org/10.1016/0143-8174(84)90020-9
  17. H. H. Nersisyan, J. H. Lee, and C. W. Won, 'Self-Propagating High-Temperature Synthesis of Nano-Sized Titanium Carbide Powder,' J. Mater. Res., 17 [11] 2859 (2002) https://doi.org/10.1557/JMR.2002.0415
  18. A. A. Shiryaev, 'Macrokinetic Aspects of SHS as Studied by Thermochemical Analysis,' Thermochemistry of SHS from 'Thermo' program
  19. J. H. Lee, S. Y. Lee, Y. H. Yoon, and C. W. Won, 'Synthesis of WC Powder form the Mixture of $WO_3$ and Carbon by SHS Process' J. Kor. Inst. Met. & Mat., 40 [11] 1150-55 (2002)