DOI QR코드

DOI QR Code

Low Temperature Sintering and Microwave Dielectric Properties of Ca[Ti1-x(Ni1/3Nb2/3)x]O3 Ceramics

Ca[Ti1-x(Ni1/3Nb2/3)x]O3 세라믹스의 저온소결 및 마이크로파 유전특성

  • Lee, Young-Gyu (Department of Ceramic Engineering, Hanyang University) ;
  • Kim, Hyo-Tae (Korea Institute of Ceramic Engineering and Technology) ;
  • Nam, Joong-Hee (Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jong-hee (Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Ungyu (Department of Ceramic Engineering, Hanyang University)
  • 이영규 (한양대학교 세라믹공학과) ;
  • 김효태 (요업기술원 시스템모듈사업단) ;
  • 남중희 (요업기술원 시스템모듈사업단) ;
  • 김종희 (요업기술원 시스템모듈사업단) ;
  • 백운규 (한양대학교 세라믹공학과)
  • Published : 2006.01.01

Abstract

The microwave dielectric properties and low temperature sintering of $Ca[Ti_{1-x}(Ni_{1/3}Nb_{2/3})_x]O_3$ system were investigated at the sintering temperature $1,200\~1,350^{\circ}C$. The density and quality factors $(Q{\times}f)$ increased while dielectric constants slightly decreased with the decrease of Ti. The dielectric constant, quality factor, and temperature coefficient of resonance frequency $(\tau_f)$ were 64, 17,000 GHz, and $-9.1\;ppm/^{\circ}C$ respectively, when $CaTi_{1/2}(Ni_{1/3}Nb_{2/3})_{1/2}O_3$ ceramics were sintered at $1,300^{\circ}C$ for 4 h. $2Li_2O-B_2O_3$ was added to $CaTi_{1/2}(Ni_{1/3}Nb_{2/3})_{1/2}O_3$ to decrease the sintering temperature for LTCC application. The microwave dielectric properties of the samples sintered at $925^{\circ}C$ for 2 h with the addition of $6\;wt\%\;2Li_2O-B_2O_3$ were $\varepsilon_r=48.7,\;Q{\times}f=8,460\;GHz$, and $\tau_f=+5.6ppm/^{\circ}C$. Compatibility test of the composition with silver electrode shows no reaction with silver electrode, implying the feasibility as a high-K LTCC material.

Keywords

References

  1. A. Okaya, 'The Rutile Microwave Resonators,' Proc. IRE, 48 1921-23 (1960)
  2. S. B. Cohn, 'Microwave Band Pass Filters Containing High-Q Dielectric Resonators,' IEEE Trans, Microwave Theory & Tech., 16 [4] 218-20 (1968) https://doi.org/10.1109/TMTT.1968.1126654
  3. R. R. Tummala, 'Ceramic and Glass-Ceramic Packaging in the 1990s,' J. Am. Ceram. Soc., 74 [5] 895-908 (1991) https://doi.org/10.1111/j.1151-2916.1991.tb04320.x
  4. S. D. Park, H. G. Kang, Y. H. Park, and J. D. Mun, 'LTCC and LTCC-M Technologies for Multichip Module,' J. Microelectronic & Packaging Soc., 6 [3] 25-35 (1999)
  5. J. H. Jean and C. R. Chang, 'Camber Development During Cofiring Ag-Based Low- Dielectric-Constant Ceramic Package,' J. Mater. Res., 12 [10] 2743-50 (1997) https://doi.org/10.1557/JMR.1997.0365
  6. M. Valant and D. Suvorov, 'Chemical Compatibility between Siver Electrodes and Low-Firing Binary-Oxide Compounds: Conceptual Study,' J. Am. Ceram. Soc., 83 [11] 2721-29 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01623.x
  7. Y. Wang, G. Zhang, and J. Ma, 'Research of LTCC/Cu, Ag Multilayer Substrate in Microelectronic Packaging,' Mater. Sci. Eng., B94 48-53 (2002)
  8. H. Mandai and S. Okubo, 'Low-Temperature Firable Deleetric Ceramic Materials,' Ceram. Trans., 32 91 (1993)
  9. K. H. Yoon, M. S. Park, J. Y. Cho, and E. S. Kim, 'Effect of $B_2O_3-Li_2O$ on Microwave Dielectric Properties of $(Ca_{0.75}Sm_{0.4}Li_{0.25})TiO_3$ Ceramics,' J. Eur. Ceram. Soc., 23 2423-27 (2003) https://doi.org/10.1016/S0955-2219(03)00164-X
  10. H. Tamura, 'Improved High-q Dielectric Resonator with Complex Perovskite Structure,' J. Am. Ceram. Soc., 67 cC-59-C-61(1984)
  11. S. Kawashima, M. Nishida, I. Ueda, and H. Ouchi, '$Ba(Zn_{1/3}Ta_{2/3})O_3$ Ceramics with Low Dielectric Loss at Microwave Frequencies,' J. Am. Ceram. Soc., 66 [6] 421-23 (1983) https://doi.org/10.1111/j.1151-2916.1983.tb10074.x
  12. E. J. Fresia, L. Katz, and R. Ward, 'Cation Substitution in Perovskite-Like Phases,' J. Am. Chem. Soc., 81 4783-85 (1959)
  13. I. M. Reaney, J. Petzelt, V. V. Voitsekhovskii, F. Chu, and N. Setter, 'B-Site Ordered and Infared Reflectivity in $A(B^{\prime}B^{\prime\prime})O_3$ Complex Perovskite Ceramics,' J. Appl. Phys., 76 [4] 2086-92 (1994) https://doi.org/10.1063/1.357618
  14. R. C. Kell, A. C. Greenham, and G. C. Olds, 'High-Permittivity Temperature Stable Ceramics with Low Microwave Loss,' J. Am. Ceram. Soc., 56 [7] 352-54 (1973) https://doi.org/10.1111/j.1151-2916.1973.tb12684.x
  15. H. Kagata and J. Kato, 'Dielectric Properties of Ca-Base Complex Perovskite at Microwave Frequencies,' Jpn. J Appl. Phys., 33 9B 5463-65 (1994) https://doi.org/10.1143/JJAP.33.5463
  16. ASTM C 373-88, 'Standard Test Methods for Water Absorption, Bulk Density, Apparent Porosity and Apparent Specific Gravity of Fired Whiteware Products,' p. 1-2 (Reapproved 1999)
  17. B. W. Hakki and P. D. Coleman, 'A Dielectric Method of Measuring Inductive Capacitance in the Millimeter Range,' IRE Trans. Microwave Theory Tech., 8 402-10 (1960) https://doi.org/10.1109/TMTT.1960.1124749
  18. T. Nishikawa, K. Wakino, H. Tanaka, and Y. Ishikawa, 'Precise Measurement Method for Temperature Coefficient of Microwave Dielectric Resonator Material,' IEEE MTT-S Digest., 277-80 (1987)
  19. D. A. Sagala and S. Nambu, 'Microscopic Calculation of Dielectric Loss at Microwave Frequencies for Complex Perovskites $Ba(Zn_{1/3}Ta_{2/3})O_3$,' J. Am. Ceram. Soc., 75 [9] 2573-75 (1992) https://doi.org/10.1111/j.1151-2916.1992.tb05613.x
  20. E. L. Colla, I. M. Reany, and N. Setter, 'Effect of Structural Changes in Complex Perovskites on the Temperature Coefficient of the Relative Permittivity,' J. Appl. Phys., 74 [5] 3414-25 (1993) https://doi.org/10.1063/1.354569
  21. H. Scholze, Glass Engineering, Translated by J. H. Lee in Korean Version, Bando Publishing. Co., 263-66 (1989)