$41^{\circ}YX\;LiNbO_3$ 기반 SAW 압력센서 개발

Novel SAW-based pressure sensor on $41^{\circ}YX\;LiNbO_3$

  • 왕웬 (아주대학교 전자공학부) ;
  • 이기근 (아주대학교 전자공학부) ;
  • 황정수 (아주대학교 전자공학부) ;
  • 김근영 (아주대학교 전자공학부) ;
  • 양상식 (아주대학교 전자공학부)
  • 발행 : 2006.01.01

초록

Single phase unidirectional transducer (SPUDT), 리플렉터, 웨이퍼 본딩 패키지로 구성된 표면탄성파 (surface acoustic wave, SAW) 기반 압력센서가 개발되어 졌다. Coupling of Mode (COM) 모델링에 의한 소자의 시뮬레이션 및 최적 설계 변수가 얻어졌다. Finite Element Methods (FEM)를 통해 주어진 압력에 따른 다이어프램 벤딩, 스트레인/스트레스 변화 및 SAW 속도변위가 미리 예측되어졌다. 유출된 최적 설계 변수를 이용 440 MHz SAW 기반 압력센서가 41o YX LiNbO3 기판 위에서 제작되어졌다. 고 S/N 비, 임펄스 리프렉션 피크, 작은 에러 피크가 관찰되어졌다. 측정된 S11 결과는 COM 모델링 및 FEM 시뮬레이션 결과와 일치함을 보였다.

This paper presents a novel surface acoustic wave (SAW)-based pressure sensor, which is composed of single phase unidirectional transducer (SPUDT), three reflectors, and a deep etched substrate for bonding underneath the diaphragm. Using the coupling of modes (COM) theory, the SAW device was simulated, and the optimized design parameters were extracted. Finite Element Methods (FEM) was utilized to calculate the bending and stress/strain distribution on the diaphragm under a given pressure. Using extracted optimal design parameters, a 440 MHz reflective delay line on 41o YX LiNbO3 was developed. High S/N ratio, shan reflection peaks, and small spurious peaks were observed. The measured S11 results showed a good agreement with simulated results obtained from coupling-of-modes (COM) modeling and Finite Element Method (FEM) analysis.

키워드

참고문헌

  1. L. Reindl, A. PoW, G. Scholl, and R. Weigel, 'SAW based radio sensor systems', IEEE Sensors Journal, Vol. 1, No.1, p. 69, 2001 https://doi.org/10.1109/JSEN.2001.923589
  2. G. Scholl, F. Schmidt, T. Ostertag, L. Reindl, H. Scherr, and U. Wolff, 'Wireless passive SAW sensor systems for industrial and domestic applications', IEEE Ultrasonics Symposium, p. 595, 1998 https://doi.org/10.1109/FREQ.1998.717961
  3. C. S. Hartmann, P. V. Write, 'Overview of Design Challenges for Single Phase Unidirectional SAW Filters', IEEE Ultrasonic Symp., p. 79, 1989 https://doi.org/10.1109/ULTSYM.1989.66963
  4. P. V. Wright, 'Analysis and design of Low-Loss SAW devices with internal reflections unsing Coupling-of-modes theory', IEEE Ultrasonic Symp., p. 141, 1989 https://doi.org/10.1109/ULTSYM.1989.66974
  5. Y. Suzuki, H. Shimizu, M. Takeuchi, 'Some studies on SAW resonators and multiple-mode filters', IEEE Ultrasonics Symposium, p. 297, 1976
  6. H.A.Haus, 'Modes in SAW grating Resonators', Journal of Applied physics, Vol. 48, No. 12, p. 4955, 1977 https://doi.org/10.1063/1.323625
  7. H. A. Haus, 'Bulk Scattering loss of SAW grating cascades', IEEE Transactions on Sonics and Ultrasonics, Vol. 24, No.4, p. 259, 1977 https://doi.org/10.1109/T-SU.1977.30941
  8. C. S. Hartmann and B. P. Abbott, 'Generalized Impulse response Model for SAW Transducers including effects of Electrode reflections', IEEE Ultrasonics symposium, p. 29, 1988 https://doi.org/10.1109/ULTSYM.1988.49337
  9. G. Tobolka, 'Mixed Matrix representation of SAW tranducers', IEEE Transactions on Sonics and Ultrasonics, Su-26, p. 426, 1979 https://doi.org/10.1109/T-SU.1979.31128
  10. B. P. Abbott, C. S. Hartmann, and D. C. Malocha, 'A coupling of modes analysis of chirped transducers containing reflective electrode geometries', IEEE Ultrasonics Symposium, p. 129, 1989 https://doi.org/10.1109/ULTSYM.1989.66972
  11. K. Yamanouchi, K. Shibayama, 'Propagation and Amplification of Rayleigh Waves and Piezoelectric leaky surface waves in LiNbO3', J. App. Phys., Vol. 43, p, 856, 1972 https://doi.org/10.1063/1.1661294
  12. R. M. Taziev, E. A. Kolosovsky, and A. S. Kpzlov, 'Deformation-sensitive cuts for surface acoustic waves in a-quartz', IEEE Frequency Control Symposium, p. 660, 1993 https://doi.org/10.1109/FREQ.1993.367459
  13. H. Scherr, G. Scholl, F. Seifert, and R. Weigel, Quartz pressure sensor based on SAW reflective delay line', IEEE Ultrasonics Symposium, p. 347, 1996 https://doi.org/10.1109/ULTSYM.1996.583989