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Abstract

In this paper, we consider one-step-ahead control of waveform parameters (pulse amplitudes and lengths, and FM
sweep rate) as well as detection thresholds for optimal range and range-rate tracking in clutter. The optimal control of
the combined parameter set minimizes a tracking performance index under a set of parameter constraints. The performance
index includes the probability of track loss and a function of estimation error covariances. The track loss probability and
the error covariance are predicted using a hybrid conditional average algorithm. The effect of the false alarms and clutter
interference is taken into account in the prediction. Tracking performance of the one-step—ahead control is presented for
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several examples and compared with a control strategy heuristically derived from a finite horizon optimization.

Keywords : Optimal waveform selection, Tracking in clutter

1. Introduction

With the advent of flexible digital waveform
generation techniques, many active radar and sonar
are - capable of
their transmitted

adaptively generating
The

systems

waveforms  for pulses.
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transmitted waveform has a significant effect on
measurement accuracy and conseduently on tracking
performance. The waveform of a transmitted signal
can be specified for a waveform class (e.g., Gaussian
pulse) in terms of the waveform parameters which
include pulse amplitude, pulse length, and FM sweep
rate. Recently, attention has been focused on the
question of optimal waveform parameter design to
achieve optimum performance for target tracking. In
[1, 2], waveform design was considered as an integral

part of the overall tracking system design process.
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This achieved a
improvement in the overall tracking performance. The

integrated  design significant
optimum design of waveforms in transmitted pulses
was extensively investigated in [3] and, more recently,
in [4] on the basis of steady-state estimation
performance.

In this paper, we consider one-step—ahead control
of waveform parameters which minimizes a tracking
performance index under a set of parameter
constraints. In addition to the design of the waveform
parameters, we also consider detection threshold
selection as an integral part of the overall tracking
system design process. The performance index
includes the probability of track loss and a function of
range and range-rate estimation error covariances.
The track loss probability and the error covariances
are predicted using a hybrid conditional average
(HYCA) algorithm®. Specifically, we consider the
case of a single Gaussian pulse and present a
measurement model in  explicit form which is
developed based on the resolution cell in the
delay-Doppler plane. We assume that the probabilistic
data association (PDA) filter™ is employed for
tracking. The PDA filter is known to be robust
against clutter, and performance evaluation algorithms
exist. The effect of false alarms, clutter interference
and the non-unity probability of target detection is
in predicting PDA tracking
performance using the HYCA algorithm. In order to
the of the

waveform parameters and detection threshold, first we

taken into account

determine one-step-ahead  control
compute the tracking performance indices on a set of
feasible grid points in the control parameter space,
and then choose the grid point (or the combined
parameter set) with the smallest index as our
one-step-ahead optimal control. A relatively coarse
grid seems computationally efficient and enough to
obtain a near-optimal control. Numerical experiments
were performed to present tracking performance of
the one-step-ahead control for several examples and
to compare it with that of a control strategy

heuristically derived from a finite horizon optimization.
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II. Sensor and Measurement Modeling

Assuming a return from a Swerling I target, we can
obtain the relationship between the probability of
detection (Pp), and the false alarm probability (Pr)

such that

1
PD(’T',U)) — PF}+SNR - A(—Tw) .

(D

Here, SNR is the signal-to-noise ratio which is the
ratio of the expected value of the signal energy from
target return to the noise spectral density. A (—7,w)
denotes the ambiguity function®™” for the actual
return with time delay 7 and Doppler shift w when a
receiver filter is matched to a zero delay and a zero
Doppler shift. To be more specific, we will focus on
the case where the envelope function s(t) is a linear
frequency modulated (LFM) pulse with Gaussian
amplitude modulationm, that is,

5(t) = (—=5 )Y4eap (— (—21”? —jb)et) @

o

where 7 is the pulse length parameter and b is the
linear frequency sweep rate parameter. (The effective
pulse length is determined by the point where the
Gaussian pulse amplitude drops to 0.1 percent of the
peak pulse amplitude, and is 7.43387 in the case of
the Gaussian pulsem.) Gaussian amplitude modulation
ambiguity  function The
beneficial effects of amplitude modulation were

discussed in [4]. In this case, the ambiguity function
7l

SUPPresses sidelobes.

A(—T,w) is given as

l

3
7 3)

A(= 7, w) = exp[— %( + 17 (w— 2b7)2)].

Often the resolution cell 1n the delay-Doppler (7, w)
plane is defined in a tessellate shape, and it contains

a region of Pp which is higher than a certain level®,

The region can be expressed in terms of the
ambiguity function and a corresponding parameter
as '

" Ro={(r,w): A(— T,w) > exp(— @)

1
Ly
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Clearly the region K¢ is an ellipse in the case of an

LFM Gaussian pulse. For the sake of simplicity, we
approximate our resolution cell by the rectangle

which encloses the ellipse B¢ and is tangent to the

sides. Using this approximation we develop a simple
but reasonably accurate model of target detection and
measurement. Let us denote the rectangular resolution
cell by C. A typical shape of the resolution cell is
shown in Fig. 1. The dots in the figure are the
sampling grid, and for each sampling point a filter is
matched to a replica of the envelop function s(¢)
with a corresponding time delay and Doppler shift.
The shaded area indicates the region where the
detection probability for the sampling point at the
origin is higher than for any other sampling point.
The ellipse is the region B¢ and the parallelogram
indicates the resolution cell C. The resolution cell
appears to ‘be a parallelogram in this figure due to
the different coordinate scales, but it is indeed a
identical Notice that the
resolution cell C well matches with the shaded

rectangle for scales.

region.
The expected value of Pp in the cell C, denoted by

PD, is
P,= //CPD(T,w)f(T,w)dew///l;f(T,w)dew )

where f(r,w) is the probability density function of
the target being at the coordinate (7, w). We assume
that the target location is uniformly distributed over
the resolution cell C, ie., f(r,w) is uniform over C.
Then

P,= ﬁ//c Py(7, w)drdw (6)

where C denotes the size of the cell C. The
expected value Py is an approximate probability of

target detection of our tracking system. It is
interesting to note that the size C of the rectangular

cell is 4 and it is invariant to the parameters 7 and

b. If the signal-to—noise ratio SNR is sufficiently

(33)
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Fig. 1. Region Rc (elipse), resolution cel C

(parailelogram), and region (shaded area) that
detection probability for the sampling point at the
origin is higher than for any other sampling point
{sampling points are denoted by dots in the
figure).ease put the title of figure here.

high, SNR- A(—7,w) > 1 usually holds over C.
Under this assumption that the signal-to—noise ratio
is sufficiently high, we can use the approximation
Substituting
this approximation into (1) and substituting (1) into

1+ 5NR- A(— r,w)= (1 + SNR) - A(— 7, w).

(6), we can obtain an approximate expression for P D

as

5 9
PD~PD00,1

(D

_..—.1 o
where Ppy = PA+35" and e = Z)(—é—vﬁlan)‘“/((?H 1)- Ky,
k=0

The approximation of the series @ with up to

third-order terms holds very accurately for a wide
range of parameters. Notice that Py depends on
SNR, Pp and +%, but not on b.

We

matrix in explicit form under the assumptions that

derived the measurement error covariance

f(r,w) is uniform over C and that a target located

in a given cell does not effect a detection in any
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other cells. Under these assumptions, target detection
takes place in proportion to Pp(7,w) inside the
resolution cell C, given that the target lies in the
cell. Note that the coordinate of the sampling grid
point of the cell C was assumed to be (0,0) and it
is the (location) measurement of target detection to
be forwarded to the tracker. As a consequence, the
measurement error of target detection is the random
variables (, w) distributed in proportion to P, (7, w)

over C. The covariance matrix of this error

distribution is

7 2b772)

szz%( 2bi? 1P + 4b %

[29]

2 —’yzlan F/((2k+3) - k).

where a, The

L

approximation with up to third-order terms, and the
ratio @/a, can also be evaluated by the ratio of

series is evaluated very accurately by the

those approximations of @ and @;. Although this

measurement model is somewhat simplistic, it Seerﬁs
reasonably accurate for our characterization of
tracking performance.

In [7], the sampling intervals of the output signal
in time and in angular frequency have been suggested
for a pulse with no frequency modulation as the
inverse of the root-mean-square signal bandwidth
and the

duration, respectively. For a Gaussian pulse, this pair

inverse of the root-mean-square signal

of sampling intervals gives a resolution cell with size
equal to 2. Our resolution cell C has size 2, if we

choose

9

Recall that the ellipse R inscribed in the cell C is
specified by (4) with parameter 7. In the following
section, we assume that the covariance matrix (8) is
the measurement error covariance matrix of our
measurement system, and assume that the probability
of target detection is given by (7) with parameter (9).
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II. Tracker Characterization

Let us denote the state vector of a target by
xz=[rr]”, where 7 and T denote target range and

range-rate, respectively, and let us denote the

measurement vector by z= [rw]T, where 7 and w
denote time delay and Doppler shift of target return,
respectively. We assume the model described in [3]
target and measurements. The

for motion

" measurements are validated through a validation gate

ZG[SJ, and the volume of the validation gate is denoted
by Vi We also assume that the number of false
measurements in the gate volume V approximately
by a Poisson distribution with parameter AV, where
A= Py/| C| +p is the expected number of falsé

measurements per unit volume. Here, p is the

expected number of clutter measurements per unit

volume in the 7—w plane. )

Among various algorithms for tracking in clutter,
we chose to use the PDA filter®®, which evaluates the
posterior probabilities of associations. A HYCA
algorithm has been developed in [5] in which the
covariance matrix of the PDA filter is obtained by
replacing the measurement dependent terms in the
stochastic Riccati equation[ﬁ] with their conditional
expectations evaluated only over possible locations of
measurements in the validation region. This gives an
approximate propagation of the covariance that retains
its dependence on the number of the validated
measurements. ]

For our PDA tracker characterization, we slightly
modified the HYCA algorithm in order to obtain an
approximate propagation of the covariance under the
that the of the wvalidated

measurements is maintained to be smaller than a

condition number
certain integer M. The integer M is the tolerable
limit on the number of validated measurements such
that, if the number of validated measurements reaches
or exceeds M at a certain time, the tracking filter is
on the verge of losing track. We use this hybrid
approximation in quantifying the estimation accuracy
of PDA tracking. One cycle of this modified HYCA®
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starts with given conditional expected value of the
state covariance under the event that there were
m(k— 1) validated measurements at &— 1, denoted by

P(k—1|k—1,m (k—1)), and a given conditional
probability P[m(k—1)|m(k—1) < M], denoted by
Pm(k—1)]. It updates the
P(klk),m(k)) and P'[m(k)]. It also computes the

pair to give
average value of P(k|k,m (k)) over m(k), denoted

by P(k| k), as
M—-1

Pkl k)= <%]zol_’(klk,m(k)) - P'lm (k)] (10)

which is the conditional

probability of the number of validated measurements

and computes P[m (k)]

at k being equal to m(k) given that the number at
any previous time is less than M. The cumulative
probability of track loss through time k is given by

k M-

Py (k)y=1—- TI¢(

i=1 m(i)=

OP [m (9)]). 1y

In the following section, we use as a performance
measure of PDA tracking, a weighted sum of the
cumulative probability of track loss (11) and a

function of the approximate covariance (10).

IV. Waveform Parameter and Threshold
Optimization

Based on the measurement model and the tracker
characterization developed in Sections I and I, we
formulate a finite horizon optimization problem to
minimize a performance index for PDA tracking. The
sequence of the combined parameters
0(k) = (A (k),n(k), b(k), Pr(k)) the
parameters to be optimized. Notice that A (k), n(k)
and b(k) denote the peak amplitude, the length

parameter and the linear frequency sweep rate of the

represents

transmitted pulse at scan k, respectively. Pr(k) is the
false alarm probability at the scan. First, let us define

the index function for our optimization problem

(35

35

J= e Py (K) + ¢ S (P (K] k), (12)
k=1

where ¢ and G are weighting factors and f(P (k| k))

is a function of the approximate covariance P(k|k).
The cumulative probability of track loss P, (K) and

the approximate covariance P (k| k) are evaluated by
(11) and (10), respectively, to compute the index

function J. Given the process noise spectral density

2
@

sequence {0(k)1 k=1,2, ---, K}.

We can now state that finite horizon optimization

o5, the index J is a function of the parameter

problem :

min
k) k=1,2, -, Kl O

(13a)

subject to
Pkl k,m(k) = b ((P(k—11k—1,m(k—~1)), Plm(k—1)]

| m{k—1)Y=0,1, -, M=1}, m(k), 8(k)) (13b)

Plm (k)] = hy({P(k—11k—1,m(k—1)),P'{m(k—1)]

for m(k)=0,---,M—1
P(010,m(0)) and P'[m(0)] are given. The set ©

and k=1,---, K.

denotes a feasible set of the parameter sequence
{6(k)| k=1,2, -, K}. The
{(8(k)|k=1,2, ---,K}€ © can

limitations on the parameters,

constraint
include various
for instance, the
maximum limits on the energy, amplitude, length, and
FM sweep rate of transmitted pulses. The cumulative
probability of track loss Pr;(K), as a part of the index
function (12), plays a role as a soft constraint on the
probability of track loss. By setting K to one and
solving the optimization problem at each scan, we

obtain an one-step-ahead optimal control.

V. Numerical Experiments

The optimization problem was solved numerically for
several sonar-tracking scenarios. Lirmitations on the
peak amplitude, length parameter, FM sweep rate, and
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energy of transmitted pulses are imposed on the
optirhization as parameter constraints. First, let us
assume that, for simplicity, SNR= A®y. Under this
condition we set limits on the energy (or SNR),
amplitude, and length parameters of the transmitted
(Gaussian) pulses as follows: SNR < SNR

25X 107° < < 2.5% 1072 in sec, and A < 100.
The FM sweep rate is limited to an interval 8< b,
with by =57 % 10° rad/sec’. We consider the

following four cases.

Case I: 02=10"", py=10"%, and SNR,,, = 63.1 (18dB)

Case II: 0?) =102, p, = 107%,and SNR,,= 63.1 (18dB)
Case II: o2
2
q

Case IV: 02 =1072 p,

=10"', p,=0,andSNR_,, = 63.1 (18dB)

max

107%, andSNR,, = 15.8 (12dB)

max

In the above, the power spectral density of the target

process noise O'Zq and the spatial density of clutter Pq

have units of m%rad® and (rad)~!, respectively. The
density of clutter measurements p depends on many
factors including the spatial clutter density Po, clutter
factors including the spatial clutter density Po, clutter
signai strength distribution, and detection threshold.
Here, iwe performed numerical experiments for Rayleigh
clutter. The signal-to-noise-ratio of clutter return is
to be SNR/2. In this

assumed case,

1
p (k) = poPr (k) T+SNR(R)/Z

In our experiments, we set the time between scans to
2 sec, the carrier (angular) frequency to 5w 10*
rad/sec, the speed of wave propagation to 1500 m/sec,
g=4 (that gives Pg=0.9997 for 4-sigma gate on

onE E}EH\IE{Q} HE2E g9 One—Step—Ahead MO
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the two dimensional space), and V> = 1 /2 (that gives
C=2). M was set to 4. In the above, ¢ is a parameter
characterizing the size of the "g-sigma” ellipsoidal
gate™, and P denotes the probability that the target
measurement falls inside the validation gate given that
the target is detected. For f(P (k| k)) in (12), we used
WP (k| k)WT where W is a weighting row vector
[1T]. The function WP (k| k)W" equals Py (k| k)
+2TP (k| k) + TPy, (k| k), where P,(k| k) denotes
. This

the (4,7)-th element of P(k|k). function

represents a measure of the position estimation
in time. The
weighting factors ¢; and ¢ were set to 1 and 1073,

accuracy projected one-step—ahead

respectively. _

In the finite horizon optimization, we set K to 40.
Based on numerical solutions to this optimization, we
proposed in [8]. a parameter switching strategy
(denoted by SW) which is described in Table 1 for each
case. The strategy SW switches between two sets of
the combined parameters, depending on the value
A(k)Ve(k) which is evaluated by using the
parameters of the previous scan. We performed
simulations of 50,000 Monte Carlo runs for the finite
horizon optimization, the switching strategy SW, and
the one-step-ahead control to evaluate their tracking
performances over 40 scans. Constraint SNR < SNR,,,
was always active in the finite horizon optimization.
We select the pulse amplitude for SW so that SNR
becomes SNR,,... We obtained one-step-ahead optimal
control by evaluating the index function J at 100

grid-points on the parametér space and by choosing

E 1. Z Caseofl Oist A2 gty Swe| oty njzlo|g]
Table 1. Heuristic parameter switching strategy SW.
Ak)Vg(k) < 0.3 A(k)Vg(kE) = 03
nk)  b(k) Pek) n(k) b(k)  Puk)

Case ] |6.31x10°°% b, 5x107" [631x107* —b,,  5x107*
Case I | 125x107% b,  4x107° [631x107% —bg, 6x107*
Case M |250x107% by, 9x107* [6.31x10°° b 4.5x1074
Case IV |1.25x 1072 b,  2x107° {650x107% —b,  4x1073

(36)
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Table 2. Simulation results for Case |.

Case Iof chst AlE3jold 2=t

2
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J j ( K) E WP (k) k) w7 steady-state rms steady-state rms
. ' range error (m) | range-rate error (m/sec)
Finite horizon optimization | 0.504 0.210 2.94 < 10? 1.087 0.359
SW 0.517 0.213 3.04 x 102 1.127 0.360
One-step-ahead control | 0.537 0.178 3.59 x 10? 1.265 0.373

v
ar

Table 3. Simulation results for Case I,

3. Case lioff cHet Al2efold 22t

J 2 ( K) E WP (kI k) wT steady-state rms steady—statg ms
range error {m) | range-rate error (m/sec)
Finite horizon optimization | 0.313 0.127 1.86 x 10° 0.487 0.140
SW 0.315 0.137 1.78 x 10° 0471 0.136
One-step-ahead control 0.319 0.096 - 2.23 x 10° 0.755 0.180
E 4. Case liof tist Algaold Z2t
Table 4. Simulation results for Case Hll.
J Py (K) Z WP (k| k) w7 steady-state rms steady-state rms
range error {m) | range-rate error (m/sec)
Finite horizon optimization |8.95 X 107 %[2.17 X 10~%|  6.78 x 10' 0.544 0.212
SW 9.62 < 1072(2.22 x 1072  7.40 x 10! - 0.539 0.212
One-step-ahead control  [8.94 X 1072 2.00 x 1072 6.94 x 10 0.523 0.209
E 5 Case Ivoll tjst Ajgejold 2ot
Table 5. Simulation results for Case V.
J P, ( K) E WP (k| k) W steady-state rms steady-state rms
range error (m) | range-rate error (m/sec)
Finite horizon optimization | 0.774 0.127 6.47 < 10° 0.880 0.175
SW 0.761 0.164 5.97 x 10 0.848 0.175
One-step-ahead control | 0.973 0.074 8.99 x 10° 0.888 0.185

the parameter set that minimizes the index. Here, we
also choose the pulse amplitude so that SNR
becomes SNR,,.. Tables 2-5 list the simulation

results of average values of J, Pg(k), and

S IWP(k| k)W", and average rms errors of range

and range-rate estimations. Although the index J for

the finite horizon optimization and SW is not exactly
the that the

one-step—ahead control minimizes, it provides an

same quantity with the index
approximate but useful measure for performance

comparison. Tables 2-4 shows that all control

(37

methods perform comparably to each other in Cases
I-MI. Table 5 indicates that one-step-ahead control is
less effective in reducing the steady-state rms errors
in Case IV. In our experiments, the advantages of
one-step—ahead control over SW is not clear in terms
of tracking performances. However, one-step—ahead
control has advantages in that it can be more
adaptive to tracking conditions and easier to
implement in real~time. Notice that .the switching
strategy SW was heuristically obtained based on a

parameter sequence a priori scheduled.
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VI. Conclusion [6] Y. Bar-Shalom and T. E. Fortmann, Tracking
and Data Association, Orlando, FL: Academic
. . ' Press, 1988,
In this paper, we consider one-step—ahead control of [71 H L. Van Trees, Detection Estimation, and
waveform parameters and detection thresholds for Modulation Theory, Part I, New York: John
optimal range and range-rate tracking in clutter. The Wiley, 1971.

optimal control of the combined parameter set [81 S-M. Hong, R. J. Evans, and H.-S. Shin,
"Optimization of waveform and detection

minimizes a tracki rformance index under a set. . .
1e b threshold for range and range-rate tracking in

of parameter constraints. Tracking performance of the clutter,” TEEE Transactions on Aerospace and
one-step—ahead control is presented for several Electronic Systems, vol. AES-41, no. 1, pp.17-33,
examples and compared with a control strategy January 2005.

heuristically derived from a finite horizon optimization.
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