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Streptomycetes are Gram-positive microorganisms producing
secondary metabolites through unique physiological
differentiation [4]. The microbes show unusual morphological
differentiation to form substrate mycelia, aerial mycelia,
and arthrospores on solid medium [19]. Substrate mycelium
growth is sustaining with sufficient nutrients in the culture
medium. The concentration of a specific individual substrate
in the culture environment is the most important extracellular
factor allowing vegetative mycelia growth, where extracellular
hydrolytic enzymes participate in the utilization of water-
insoluble substrates.

However, with starvation of nutrients in the culture
medium, the vegetative mycelia differentiate to aerial
mycelia and spores. It has been considered that shift-
down of essential nutrients for mycelia growth is the most
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important factor triggering morphological and physiological
differentiation in Streptomyces spp. Since proteineous
macromolecule compounds are the major cellular components,
these are faced to endogenously metabolize following a
severe depletion of nitrogen source in culture nutrients
(Fig. 1). Various proteases were identified of which production
was specifically related with the phase of mycelium growth
and also morphological differentiation. The involvement of
proteases and protease inhibitor is reviewed as a factor
explaining the mycelium differentiation in Streptomyces spp.

Proteases and Protease Inhibitors Produced in

Streptomyces spp.

It was reported that Streptomyces can produce various

kinds of extracellular proteases and also protease inhibitors.
The proteases produced abundantly in Streptomyces spp.
are classified according to active sites or a susceptible
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Fig. 1. Reuse of substrate mycelium by hydrolytic enzymes
for morphological differentiation in Streptomyces spp.
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region of their substrates as follows: serine proteases,
metalloproteases, and aminopeptidases. In the S. coelicolor
genome, 27 serine proteases, 8 metalloprotease, and 21
aminopeptidases have been annotated [10].

Figure 2 represents a phylogenetic analysis of Streptomyces
proteases including annotated S. coelicolor proteases. Serine
protease family and metalloprotease/aminopeptidase family
clusters were classified in the phylogenetic tree.

Serine Protease. Serine proteases can be divided into
four groups according to substrate specificity: trypsin-like
proteases (TLPs) that cleave after positively charged residues,
subtilisin and chymotrypsin-like proteases (CTPs) that
cleave after large apolar residues, elastase-like proteases
(ELPs) that cleave after small nonpolar residues, and
amino acid specific proteases that cleave after negatively
charged residues like glutamic acid.
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Fig. 2. Phylogenetic analysis of proteases produced in Streptomyces spp.
SCO number was taken from the S. coelicolor database annotation of the S. coelicolor genome sequence at http://streptomyces.org.uk. Abbreviations of
strain name: SHY, S. hygroscopicus; SGR, S. griseus; SAL, S. albogriseolus; SL, S. lividnas; SFR, S. fradiae; SGL, S. glaucescens; SEX, S. exfoliatus; SVI,

S. viridosporus; SAT, S. atroolivaceus; SST, S. steffisburgensis.



TLPs are produced abundantly from Streptomyces spp.
including S. griseus and S. fradie [25, 35, 68, 69]. TLPs
produced from S. griseus have been well characterized
with regards the enzymatic properties, molecular cloning of
the gene, expression regulation, elucidation of the molecular
structure, and modification of the structure, etc. [3, 47, 70—
72], as well as trypsin of S. erythraeus [65, 96, 97].

CTPs are also widely produced in various species of
Streptomyces. The major function of CTPs is to hydrolyze
insoluble extracellular proteins as the nitrogen source
for mycelia growth [30]. CTPs produced in S. griseus
were characterized in terms of substrate specificity and
molecular structure [6—8, 78]. The characteristics of subtilisin
as a type of serine protease were identified from S
spheroides, S. lividans, and S. albogriseolus |16, 54, 80].
Another type of serine protease hydrolyzing after specific
amino acid residues such as glutamic acid was also
isolated from S. griseus and S. fradie [5, 49,50, 77,79,
81, 82].

Metalloprotease. Metalloprotease can bind metal ions
such as Ca®™ or Zn™ at the active site of the proteases. It
has been found that the metal ions coordinate two or four
side chains rendering the enzyme to have protease activity.
Metalloproteases were identified from diverse species of
Streptomyces. For instance, S. lividans produced five different
types of metalloproteases (SlpA, SlpB, SlpC, SlpD, and
SIpE), among which SlpD and SIpE were found to play
essential roles on mycelia growth and cell viability [11, 13].
SIpA was also identified to be a novel class of neutral protease,
of which expression was regulated by a transcriptional
regulatory protein of a LysR family [13, 61]. Interestingly,
S. cacaoi produced an extracellular zinc-containing neutral
metalloprotease that was initially accumulated as a premature
protein and then the premature protein was modified to form
a mature protein via an autocatalytic cleavage mode 17, 18].
Additionally, two zinc-containing metalloproteases were
identified from S. griseus [92], and a neutral metalloprotease
was identified from S. fradiae [12]. A novel subfamily of
zinc-containing metalloendoprotease was identified from
S. caespitosus and the protease was found to be the
smallest protease (132 aa) among those identified from
Streptomyces spp. {24, 58].

Aminopeptidase. Aminopeptidase is an exopeptidase that
is susceptible to N-termini of substrate proteins. The most
well-characterized aminopeptidase is produced by S. griseus
(SGAP), which is a zinc metalloenzyme activated by calcium
ions [1,9,23]. A novel aminopeptidase found from S.
septatus was compared with those obtained from S. griseus
[2], and an aminopeptidase and tripeptydyl aminopeptidase
were identified from S. lividans [14, 15, 55]. Furthermore,
substrate specificity of the tri/tetra peptidyl aminopeptidase
produced by S. mobaraensis was determined [94] and the
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tripeptidyl aminopeptidase was found to participate in the
translational modification of transglutaminase [98].

Streptomyces Subtilisin Inhibitor. It has been reported
that Streptomyces spp. produce various types of protease
inhibitors having either high or low molecular weight
[63]. Among proteineous protease inhibitors, Strepfomyces
subtilisin inhibitor (SSI) was the first isolated from
Streptomyces [63, 64, 75] and thereafter the SSIs were also
isolated from other species of Streptomyces [27, 93, 95],
and the structure of SSI was proposed [89, 90]. The SSIs
are quite conserved in Streptomyces spp. [57, 83, 87] and
show high similarity in amino acid alignment with about
100 amino acids.

It was found that SSIs inhibited various types of serine
proteases such as subtilisin, chymotrypsin, and trypsin.
In fact, serine proteases (chymotrypsin family) interacting
with SSIs were identified in S. albogriseolus [80, 84—86,
88]. Furthermore, two zinc-containing metalloproteases
(SGMPI and SGMPII) identified from S. griseus [92] were
found to be strongly inhibited by SSI [53,56]. The
proteases inhibited by SSIs showed an identical catalytic
triad. The inhibition specificity of the SSIs was determined
by P1 and P4 sites of the reaction center [51, 52]. The SSIs
isolated from various microorganisms are dimeric proteins.
The inhibitors consist of two identical subunits that inhibit
serine proteases by forming a tightly bound inhibitors-
protease complex.

Extracellular Proteases and Protease Inhibitors Play
Cascade Roles in the Morphological Differentiation of
Streptomyces exfoliatus SMF13
A strain (SMF13) of Streptomyces exfoliatus was found to
produce extracellular proteases and protease inhibitors
(PIs) [38,39]. The proteases obtained from the culture
supernatant of S. exfoliatus SMF13 was chymotrypsin-like
protease (CTP), metalloprotease (MTP), and trypsin-like
protease (TLP). The production of proteases was very closely
linked to the culture condition and medium formulation.
Nitrogen source was the most critical ingredient affecting
the production of proteases. The protease inhibitors (PIs)
produced in the strain were found to be a mixture of
N-acetyl-leu-leu-arginal, N-acetyl-ile-leu-arginal, and N-
acetyl-leu-ile-arginal. The latter two molecules are new
analogues of leupeptin [39]. '
CTP and PIs were produced in association with substrate
mycelia growth, whereas TLP were progressively produced
with an apparent decrease in the mycelium growth in
submerged culture. Pls produced during the mycelium
growth were inactivated when mycelia growth reached the
stationary phase in submerged cultures. The TLP activity
increased when Pls were completely inactivated by a new
protein, leupeptin-inactivating enzyme (LIE), and autolysis
of mycelia in the late stationary phase was apparently
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Fig. 3. Growth and production of proteases associated with
cellular differentiation in Streptomyces exfoliatus SMF13.

linked with the increase of TLP activity [40]. The activity
of LIE and TLP was high in the region of aerial mycelia
or spores, but that of PIs and CTP was higher at the
peripheral growing region [41] (Fig. 3). The quantitative
relation between the medium composition and morphological
differentiation was determined with the data obtained from
batch and chemostat cultures. The specific rate of Pls
production (g,,) was closely related to the specific glucose
uptake rate (g,) and specific rate of mycelium growth ().
However, the specific rate of LIE production (g,,) was
inversely related to the u value. This is the first quantitative
analysis on the relation between mycelium differentiation and
various proteases and protease inhibitors in Streptomyces
spp. [42, 43].

It was found that the mycelium protein extract of S. exfoliatus
SMF13 was hydrolyzed effectively by TLP (31,800 Da), which
was purified from the culture supernatant of S. exfoliatus
SMF13. The N-terminal amino acid sequence of TLP was
determined to be RVGGIXAAQGNFPFQQXLSM. TLP
was inhibited competitively by leupeptin of which the K,
value was 0.015 pM. The data indicated that TLP produced
in the stationary phase participated in the degradation of
substrate mycelium protein, and the protein hydrolysates
were used subsequently for the aerial mycelium growth
[44, 45]. The production of TLP was also observed from
the stationary growth phase of various species of
Streptomyces such as S. aburaviensis, S. coelicolor A3(2),
S. microflavus, S. roseus, S. lavendulae, and S. rochei.

Leupeptin-inactivating enzyme (LIE) was purified from
S. exfoliatus SMF13 to 34,700 Da and the N-terminal

amino acid sequence of LIE was APTPPDIPLANVPA. LIE
hydrolyzed leupeptin (N-acetylleucine-leucine-argininal) to
produce N-acetyl-leucine, leucine, and arginal as the products.
LIE showed an absolute specificity for peptide bonds with
leucine at the P1 position, suggesting that LIE is a leucine-
specific protease. LIE activity was found to be a metalloprotease
activated by Mg”" or Ca®" ions. Morphological differentiation
of S. exfoliatus SMF13 was clearly inhibited by the addition
LIE inhibitors [46].

From the observations, it was postulated that CTP
participated primarily in the proteolysis of the proteinaceous
nitrogen source for cell growth. PIs inhibited the activity of
TLP; LIE inactivated endogenous leupeptin; TLP functioned
as an enzyme involved in the metabolism of cell proteins
during morphological differentiation. The cascade roles of
the compounds in S. exfoliatus SMF13 is assumed to
provide a selective advantage in the flexible culture conditions
to overcome the limitation of the various external nutrient
sources [40-42].

Quantitative Analysis of the Roles of Proteases in the
Morphological Differentiation of Streptomyces albidoflavus
SMF301

As discussed in previous parts, mycelium growth and
morphological differentiation of Streptomyces spp. are
closely related to the availability of protein source in the
culture medium. However, studies on the morphological
differentiation of Streptomyces spp. have been carried out
predominantly by solid culture using agar plate media
where the concentrations of nutrients are continuously
varied with culture time, and also on the location of the
culture where the quantitative relationship between nutrient
limitation and morphological differentiation has not been
well determined by the solid culture.

The species of Streptomyces forming spores in submerged
culture would provide some advantages on the solid
culture for the quantitative analysis of the relation between
morphological differentiation and a specific role of a nutrient.
Hence, a strain of Streptomyces that formed abundant spores
in submerged culture was isolated from a soil sample, and
the strain was identified as a Streptomyces albidoflavus
[76]. The characteristics of submerged spores of S
albidoflavus SMF301 were compared with those of aerial
spores formed on solid culture. The cellular contents of
Ca®, Mg”, cysteine, and unsaturated fatty acid in submerged
spores were significantly higher compared with the aerial
spores. On the other hand, aerial spores showed a higher
resistance to lysozyme digestion, mild acid treatment, heating,
and desiccation. Publications by our group were the first
reports on a comparative characterization of spores of
S. albioflavus formed in submerged and solid cultures
[26, 59, 73].

It was also found that S. albidoflavus SMF301 produced
extracellular proteases under the limitation of amino acids,



PROTEASES AND PROTEASE INHIBITORS PRODUCED IN STREPTOMYCETES 9

and the production of these proteases was closely related
to morphological differentiation [48]. The proteases were
identified as chymotrypsin-like protease, metalloprotease,
and trypsin-like protease. Mycelium growth was linked with
the production of CTP, whereas submerged spore formation
was accompanied by the production of TLP and MTP. A
mutant of S. albidoflavus defective in TLP and MTP activity
showed the characteristics of a bald phenotype, suggesting
that TLP and MTP might participate in the formation of
submerged spores. Furthermore, the growth of aerial mycelia
and formation of spores were supported by the utilization
of substrate mycelia with the involvement of MTP and
TLP (Fig. 4).

Mycelial growth and spore formation in submerged culture
of S. albidoflavus SMF301 were quantitatively analyzed in
relation to the proteases formation profiles. Kinetics analysis
showed that specific growth rate (x) was related to the
specific rate of CTP production (g.,,). However, specific
spore formation rate (g,,) was related to specific rate of
TLP production (g,,,). In addition, the formation of submerged
spores appeared concurrently with a loss of mycelial
production, indicating that TLP played an important role in
the endogenous consumption of mycelia [28-30, 74].

The morphological differentiation of S. albidoflavus
SMEF301 in a batch culture was characterized by changes
in the pyrolysis mass (PyMs) spectrometry profiles. Curie
point PyMs spectra of whole cells were found to vary with
growth phase and morphological differentiation. Multivariate

statistics and artificial neural network (ANNSs) analysis. were
used to study differentiation of the morphological and
physiological states of S. albidoflavus SMF301. Furthermore,
ANN analysis was applied to the PyMs data to predict the
state of differentiation by using two different algorithms;
viz., back propagation and a radial basis function classifier.
Both the back propagation and the radial basis classifier
algorithms succeeded in the identification of the transient
state and the degree of differentiation [31, 60].

Molecular Interaction of Proteases and Other Molecules
in Relation to Morphological Differentiation of
Streptomyces spp.

The regulatory mode of the protease expression and the
molecules that are interacting with the proteases are the
most important topics for elucidation of the role of
proteases in relation to the morphological differentiation of
Streptomyces spp.

It was reported that nucleases were required in the steps
for sporulation following after degradation of substrate
mycelium DNA and aerial mycelium formation of S.
antibioticus [21, 62]. A serine protease was involved in the
posttranslational modification of a pronuclease to give
nuclease activity. Impairment of nuclease processing resulted
in failure of aerial mycelium and spore formation in S
antibioticus [66]. Extemnal feeding of serine protease inhibitors,
such as tosyl lysine chloromethyl ketone (TLCK) and
leupeptin, resulted in loss of spore formation of S. exfoliatus

A
Spore Mycélium | Thickenédy | Submerged
mycelium spore
B
= IR L et
Spore Substrate Aerial Aerial
mycelium mycelium spore
C | cTP | TLP |
| MTP i

Fig. 4. Morphological differentiation of S. albidoflavus SMF301.

A, In submerged; B, solid cultures; C, production phase of CTP, TLP, and MTP.
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SMEF13 [46] and S. antibioticus [66]. The results indicated
that a serine protease may be involved in the activation
step of nucleases that are essential for DNA processing in
the spore formation of Streptomyces spp.

It was found that genes encoding trypsin and chymotrypsin
(sprA, sprB, sprD, sprT, and sprU) in S. griseus were
characterized to be regulated by A-factor-dependent protein
(AdpA) [33,91]. The AdpA has been well recognized to
be a key transcriptional activator for the activation of a
number of genes required for secondary metabolism and
morphological differentiation in Streptomyces spp [20, 67].
Mutants deleted in the double genes encoding trypsin
(AsprT, AsprU) and triple genes for chymotrypsin (AsprA,
AsprB, AsprD) showed normal growth but did not give
any specific morphological defects [33,91]. However,
another AdpA regulon protease, reported as Streptomyces
griseus metalloprotease A (SgmA), seems to be involved
in morphological differentiation. Disruption of a gene
(sgmA) encoding SgmA resulted in some what of a delay
of the aerial mycelium, indicating that SgmA was involved
in morphological differentiation by the degradation of
proteins in substrate hyphae for reuse in aerial hypha
formation [32]. The data confirm the previous results that
were obtained from S. exfoliatus SMF13 and S. albidoflavus
SMF301.

Since completion of the study of the genomics of S.
coelicolor [10], genes for proteases and protease inhibitors
were analyzed in conjunction with the proteomics of the
membrane-associated proteins and secreted proteins [36,
37]. From this study, the regulation mechanism of the
protease inhibitor (SSI family, Strepfomyces trypsin inhibitor)
was analyzed. In S. coelicolor, a protease inhibitor (STT)
was considered to be encoded by the SCO0762 but not by
SCO4010, which was considered to be a pseudogene. Its
expression and the protease inhibition activity were very
much lower compared with other protease inhibitors of
SSI [34]. STI has a highly conserved amino acids sequence
with other SSIs and is identical to the SLPI that was
identified from S. /ividans [93]. From a proteomics approach,
STI was found to be completely absent from the bldA
mutant. This dependence was shown to be mediated via the
TTA-containing regulatory gene adpA, a developmental gene
that is responsible for the effects of bldA4 on differentiation.
Furthermore, SSI regulation by bld4-AdpA seems to be
conserved in some Streptomyces (S. albogriseolus S-3253
and S. venezuelae). The AdpA-binding consensus upstream
of the SSI coding gene was conserved in these strains. In
addition, mutation of the SCO0762 gene resulted in
abolishment of detectable trypsin-protease inhibitory activity.
STI is a sole inhibitor protein that represents inhibition
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Fig. 5. Proposed model of differentiation regulation by proteases and protease inhibitor (STI) in Streptomyces coelicolor.
This model is based on protease and its inhibitor studies of S. griseus, S. antibioticus, and S. exfolaitus SMF13.
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activity in the extracellular region. The biological role of
STI is still not clear, because disruption of SCO0762 did
not result in any obvious morphological defect [36].

The biological function of PI including STI is assumed
as a key regulator in the extracellular region in two ways.
First, Pl controls extracellular protease activity for proper
growth of subtrate mycelium [34]. Second, PI may inhibit
specific proteases involved in translational modification of
essential protein for maintaining an accurate cell cycle
(Fig. 5). Since some serine proteases were found to be
involved in the process of morphological differentiation of
Streptomyces spp., the interaction mode between the serine
proteases and protease inhibitor is an important aspect to
be discovered.
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