Production of ColE1 Type Plasmid by Escherichia coli $DH5\alpha$ Cultured Under Nonselective Conditions

  • PASSARINHA L. A. (Centro de Engenharia Biologica e Quimica, Instituto Superior Tecnico, Departamento de Quimica, Universidade da Beira Interior) ;
  • DIOGO M. M. (Centro de Engenharia Biologica e Quimica, Instituto Superior Tecnico) ;
  • QUEIROZ J. A. (Departamento de Quimica, Universidade da Beira Interior) ;
  • MONTEIRO G. A. (Centro de Engenharia Biologica e Quimica, Instituto Superior Tecnico) ;
  • FONSECA L. P. (Centro de Engenharia Biologica e Quimica, Instituto Superior Tecnico) ;
  • PRAZERES D. M. F. (Centro de Engenharia Biologica e Quimica, Instituto Superior Tecnico)
  • Published : 2006.01.01

Abstract

Plasmid DNA (pDNA) is a product of interest for many biopharmaceutical companies and research laboratories, because of increase in the number of gene therapy protocols that use nonviral vectors. This work was undertaken to study the effect of antibiotic and dissolved oxygen concentration (DOC) on the production of a ColE 1-type plasmid (pVAX1-LacZ) hosted in Escherichia coli $DH5\alpha$ and cultured in a batch fermentor with 0.751 of Terrific Broth. A decrease in the DOC from $60\%\;to\;5\%$ was shown to increase the specific pDNA concentration approximately 1.5-fold, due to the downregulation of growth. Additionally, this increase in the pDNA concentration led to a 2.2-fold increase in the purity of cell lysates obtained after cell lysis. However, the use of higher DOC led to 2.8-fold higher volumetric productivity as a consequence of a faster growth rate, reducing the fermentation time from 24 to 8 h. Interestingly, the specific pDNA concentration, and pDNA productivity and purity were always higher $(10-15\%)$ in the absence of antibiotic. Overall, the data indicate that nonselective conditions can be used without compromising yield, productivity, and purity of pDNA.

Keywords

References

  1. Birnboim, H. C. and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523 https://doi.org/10.1093/nar/7.6.1513
  2. CBER. 1996. Points to consider on plasmid DNA vaccines for preventive infectious disease indications. US FDA. Rockville, MD, U.S.A
  3. Chen, W. 1999. Automated high-yield fermentation of plasmid DNA in Escherichia coli. American Home Products Corporation. US Patent: 5955323
  4. Chen, W., C. Graham, and R. B. Ciccarelli. 1997. Automated fed-batch fermentation with feed-back controls based on dissolved oxygen (DO) and pH for production of DNA vaccines. J. Ind. Microbiol. Biotechnol. 18: 43-48 https://doi.org/10.1038/sj.jim.2900355
  5. Diogo, M. M., J. A. Queiroz, and D. M. F. Prazeres. 2003. Assessment of purity and quantification of plasmid DNA in process solutions using high-performance hydrophobic interaction chromatography. J. Chromatogr. A. 998: 109-117 https://doi.org/10.1016/S0021-9673(03)00618-6
  6. Lahijani, R., G. Hulley, G. Soriano, N. A. Horn, and M. Marquet. 1996. High-yield production of pBR322-derived plasmids intended for human gene therapy by employing a temperature controllable point mutation. Hum. Gene Ther. 7: 1971-1980 https://doi.org/10.1089/hum.1996.7.16-1971
  7. Prather, K. J., S. Sagar, J. Murphy, and M. Chartrain. 2003. Industrial scale production of plasmid DNA for vaccine and gene therapy: Plasmid design, production and purification. Enzyme Microb. Technol. 33: 865-883 https://doi.org/10.1016/S0141-0229(03)00205-9
  8. Prazeres, D. M. F., G. N. M. Ferreira, G. A. Monteiro, C. L. Cooney, and J. M. S. Cabral. 1999. Large-scale production of pharmaceutical-grade plasmid DNA for gene therapy: Problems and bottlenecks. Trends Biotechnol. 17: 169-174 https://doi.org/10.1016/S0167-7799(98)01291-8
  9. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Handbook. CSH Laboratory Press, Cold Spring Harbor, U.S.A
  10. Summers, D. 1998. Timing, self-control and a sense of direction are the secrets of multicopy plasmid stability. Mol. Microbiol. 29: 1137-1145 https://doi.org/10.1046/j.1365-2958.1998.01012.x
  11. Summers, D. K. 1991. The kinetics of plasmid loss. Trends Biotechnol. 9: 273-278 https://doi.org/10.1016/0167-7799(91)90089-Z
  12. Wang, Z., G. Le, Y. Shi, and G. Wegrzyn. 2001. Medium design for plasmid DNA production based on stoichiometric model. Process Biochem. 36: 1085-1093 https://doi.org/10.1016/S0032-9592(01)00149-2
  13. Williams, S. G., R. M. Cranenburgh, A. M. E. Weiss, C. J. Wrighton, D. J. Sherratt, and J. A. J. Hanak. 1998. Repressor titration: A novel system for selection and stable maintenance of recombinant plasmids. Nucleic Acids Res. 26: 2120- 2124 https://doi.org/10.1093/nar/26.9.2120