16S rDNA Analysis 9f Bacterial Diversity in Three Fractions of Cow Rumen

  • Cho, Soo-Jeong (Division of Applied Life Science, Gyeongsang national University) ;
  • Cho, Kye-Man (Division of Applied Life Science, Gyeongsang national University) ;
  • Shin, Eun-Chule (Division of Applied Life Science, Gyeongsang national University) ;
  • Lim, Woo-Jin (Division of Applied Life Science, Gyeongsang national University) ;
  • Hong, Su-Young (Division of Applied Life Science, Gyeongsang national University) ;
  • Choi, Byoung-Rock (Division of Applied Life Science, Gyeongsang national University) ;
  • Kang, Jung-Mi (Division of Applied Life Science, Gyeongsang national University) ;
  • Lee, Sun-Mi (Division of Applied Life Science, Gyeongsang national University) ;
  • Kim, Yong-Hee (Division of Applied Life Science, Gyeongsang national University) ;
  • Kim, Hoon (Department of Agricultural Chemistry, Sunchon National University) ;
  • Yun, Han-Dae (Division of Applied Life Science, Gyeongsang national University, Research Institute of Life Science, Gyeongsang National University)
  • Published : 2006.01.01

Abstract

The bacterial diversity of the bovine rumen was examined using a PCR-based approach. 16S rDNA sequences were amplified and cloned from three fractions of rumen (solid, fluid, and epithelium) that are likely to represent different bacterial niches. A total of 113 clones were sequenced, and similarities to known l6S rDNA sequences were examined. About $47.8\%$ of the sequences had $90-97\%$ similarity to 16S rDNA database sequences. Furthermore, about $62.2\%$ of the sequences were $98-100\%$ similar to 16S rDNA database sequences. For the remaining $6.1\%$, the similarity was less than $90\%$. Phylogenetic analysis was also used to infer the makeup of the bacterial communities in the different rumen fractions. The Cytophaga-Flexibacter-Bacteroides group (CFB, $67.5\%$), low G+C Gram-positive bacteria (LGCGPB, $30\%$), and Proteobacteria $(2.5\%)$ were represented in the rumen fluid clone set; LGCGPB $(75.7\%)$, CFB$(10.8\%)$, Proteobacteria $(5.4\%)$, high G+C Gram-positive bacteria (HGCGPB, $5.4\%$), and Spirochaetes $(2.7\%)$ were represented in the rumen solid clone set; and the CFB group $(94.4\%)$ and LGCGPB $(5.6\%)$ were represented in the rumen epithelium clone set. These findings suggest that the rumen fluid, solid, and epithelium support different microbial populations that may play specific roles in rumen function.

Keywords

References

  1. Akin, D. E. and L. L. Rigsby. 1985. Degradation of bermuda and orchard grass by species of rumen bacteria. Appl. Environ. Microbiol. 50: 825-830
  2. Amann, R. I., L. Krumholz, and D. A. Stahl. 1990. Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172: 762-770 https://doi.org/10.1128/jb.172.2.762-770.1990
  3. Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143- 169
  4. Bae, J.-W., J.-J. Kim, C. O. Jeon, K. Kim, J. J. Song, S.-G. Lee, H. Poo, C.-M. Jung, Y.-H. Park, and M.-H. Sung. 2003. Application of denaturing gradient gel electrophoresis to estimate the diversity of commensal thermophiles. J. Microbiol. Biotechnol. 13: 1008-1011
  5. Birnboim, H. C. and J. Doly. 1979. A rapid alkaline extraction procedure for recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523 https://doi.org/10.1093/nar/7.6.1513
  6. Farrelly, V., F. A. Rainey, and E. Stackebrandt. 1995. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl. Environ. Microbiol. 61: 2798-2801
  7. Forster, R. J., M. F. Whitford, R. M. Teather, and D. O. Krause. 1998. Investigations into rumen microbial diversity using molecular cloning and probing techniques, pp. 16-24. In R. Onodera, H. Itabashi, K. Ushida, H. Yano, and Y. Sasaki (eds.), Genetics, Biochemistry, and Ecology of Cellulose Degradation. Sukuka, Japan
  8. Gong, J., R. J. Forster, H. Yu, J. R. Chambers, R. Wheatcrof, P. M. Sabour, and S. Chen. 2002. Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum. FEMS Microbiol. Ecol. 41: 171-179 https://doi.org/10.1111/j.1574-6941.2002.tb00978.x
  9. Han, K. D., Y.-T. Jung, and S.-Y. Son. 2003. Phylogenetic analysis of phenanthrene-degrading Sphingomonas. J. Microbiol. Biotechnol. 13: 942-948
  10. Hold, G. L., S. E. Pryde, V. J. Russell, E. Furrie, and H. J. Flint. 2002. Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol. Ecol. 39: 33-39 https://doi.org/10.1111/j.1574-6941.2002.tb00904.x
  11. Kim, B.-S., H.-M. Oh, H. J. Kang, S.-S. Park, and J. S. Chun. 2004. Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. Biotechnol. 14: 205-211
  12. Kim, M.-H., S. T. Shin, Y. S. Kim, and K. H. Kyung. 2002. Diversity of Leuconostocs on garlic surface, and extreme environment. J. Microbiol. Biotechnol. 12: 497-502
  13. Kim, M.-K., H.-S. Kim, B.-O. Kim, S. Y. Yoo, J.-H. Seong, D.-K. Kim, S. E. Lee, S.-J. Choe, J.-C. Park, B.-M. Min, M.-J. Jeong, D. K. Kim, Y.-K. Shin, and J.-K. Kook. 2004. Multiplex PCR using conserved and species-specific 16S rDNA primers for simultaneous detection of Fusobacterium nucelatum and Actinobacillus actinomycetemcomitans. J. Microbiol. Biotechnol. 14: 110-115
  14. Kim, S. H., K.-Y. Kim, C. H. Kim, W. S. Lee, M. Chang, and J.-H. Lee. 2004. Phylogenetic analysis of harmful algal bloom (HAB)-causing dinoflagellates along the Korean coasts, based on SSU rRNA gene. J. Microbiol. Biotechnol. 14: 956-966
  15. Kirchman, D. L. 2002. The ecology of Cytophaga- Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39: 91-100
  16. Krause, D. O. and J. B. Russell. 1996. How many ruminal bacteria are there? J. Dairy Sci. 79: 1467-1475 https://doi.org/10.3168/jds.S0022-0302(96)76506-2
  17. Krause, D. O., S. E. Denman, R. I. Mackie, M. Morrison, A. L. Rae, G. T. Attwood, and C. S. Mcsweeney. 2003. Opportunities to improve fiber degradation in the rumen: Microbiology, ecology, and genomics. FEMS Microbiol. Rev. 27: 663-693 https://doi.org/10.1016/S0168-6445(03)00072-X
  18. Lane, D. J. 1991. Nucleic acids techniques in bacterial systematics, pp. 115148. In E. Stackebrandt, and M. Goodfellow (eds.), 16S/23S rRNA Sequencing. Chichester, John Wiley and Sons
  19. Latham, M. J., B. E. Brooker, J. L. Pettipher, and P. J. Harris. 1978. Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl. Environ. Microbiol. 35: 1166-1173
  20. Lee, S.-H., H.-R. Oh, J.-H. Lee, S.-J. Kim, and J.-C. Cho. 2004. Cold-seep sediment harbors phylogenetically diverse uncultured bacteria. J. Microbiol. Biotechnol. 14: 906-913
  21. Madden, T. L., R. L. Tatusov, and J. Zhang. 1996. Application of network BLAST server. Method Enzymol. 266: 131-141 https://doi.org/10.1016/S0076-6879(96)66011-X
  22. Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker Jr, P. R. Saxman, J. M. Stredwick, G. M. Li, B. Garrity, G. J. Olsen, S. Pramanik, T. M. Schmidt, and J. M. Tiedje. 2000. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28: 173-174 https://doi.org/10.1093/nar/28.1.173
  23. Mitsumori, M., N. Ajisaka, K. Tajima, H. Kajikawa, and M. Kurihara. 2002. Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers. Lett. Appl. Microbiol. 35: 251-255 https://doi.org/10.1046/j.1472-765X.2002.01172.x
  24. Moune, S., P. Caumette, R. Matheron, and J. C. Willison. 2003. Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiol. Ecol. 44: 117-130 https://doi.org/10.1016/S0168-6496(03)00017-5
  25. Nocek, J. E. 1997. Bovine acidosis: Implication on laminitis. J. Dairy Sci. 80: 1005-1028 https://doi.org/10.3168/jds.S0022-0302(97)76026-0
  26. Owens, F. N., D. S. Secrist, W. J. Hil, and D. R. Gill. 1998. Acidosis in cattle: A review. J. Anim. Sci. 76: 275-286
  27. Saito, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  28. Schroeder, C. M., K. W. Parlor, T. L. Marsh, N. K. Ames, A. K. Goeman, and R. D. Walker. 2003. Characterization of the predominant anaerobic bacterium recovered from digital dermatitis lesions in three Michigan dairy cows. Anaerobe. 9: 151-155 https://doi.org/10.1016/S1075-9964(03)00084-2
  29. Shin, E. C., B. R. Choi, W. J. Lim, S. Y. Hong, C. L. An, K. M. Cho, Y. K. Kim, J. M. An, J. M. Kang, S. S. Lee, H. Kim, and H. D. Yun. 2004. Phylogenetic analysis of archea in three fractions of cow rumen based on the 16S rDNA sequence. Anaerobe 10: 313-319 https://doi.org/10.1016/j.anaerobe.2004.08.002
  30. Shin, E. C., K. M. Cho, W. J. Lim, S. Y. Hong, C. L. An, E. J. Kim, Y. K. Kim, B. R. Choi, J. M. An, J. M. Kang, H. Kim, and H. D. Yun. 2004. Phylogenetic analysis of protozoa in the rumen contents of cow based on the 18S rDNA sequences. J. Appl. Microbiol. 97: 378-383 https://doi.org/10.1111/j.1365-2672.2004.02304.x
  31. Skillman, L. C., P. N. Evans. G. E. Naylor, B. Morvan, G. N. Jarvis, and K. N. Joblin. 2004. 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonizing young lambs. Anaerobe 10: 277- 285 https://doi.org/10.1016/j.anaerobe.2004.05.003
  32. Stahl, D. A., B. Flesher, H. R. Mansfield, and L. Montgomery. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54: 1079-1084
  33. Tajima, K., R. Aminov, T. Nagamine, K. Ogata, M. Nakamura, H. Matsui, and Y. Benno. 1999. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol. Ecol. 29: 159-169 https://doi.org/10.1111/j.1574-6941.1999.tb00607.x
  34. Tajima, K., S. Arai, K. Ogata, T. Nagamine, H. Matsui, M. Nakamura, R. I. Aminov, and Y. Benno. 2000. Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe 6: 273-284 https://doi.org/10.1006/anae.2000.0353
  35. Tompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  36. Vandamme, P., B. Pot, M. Gillis, P. De Vos, K. Kersters, and J. Swings. 1996. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60: 407- 438
  37. Whitford, M. F., R. J. Foster, C. E. Beard, J. Gong, and R. M. Teather. 1998. Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4: 153-163 https://doi.org/10.1006/anae.1998.0155
  38. Whitford, M. F., R. M. Teather, and R. J. Forster. 2001. Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiol. 1: 5 https://doi.org/10.1186/1471-2180-1-5
  39. Wilson, K. H. and R. B. Blitchington. 1996. Human colonic biota studied by ribosomal DNA sequence analysis. Appl. Environ. Microbiol. 62: 2273-2278
  40. Wintzingerode, F., U. B. Gobel, and E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21: 213-229 https://doi.org/10.1111/j.1574-6976.1997.tb00351.x
  41. Zeng, X., X. Xiao, P. Wang, and F. Wang. 2004. Screening and characterization of psychrotrophic, lipolytic bacteria from deep-sea sediments. J. Microbiol. Biotechnol. 14: 952- 958
  42. Zhu, W. Y., B. A. Williams, S. R. Konstantinov, S. Tamminga, W. M. De Vos, and A. D. L. Akkermans. 2003. Analysis of 16S rDNA reveals bacterial shift during in vitro fermentation of fermentable carbohydrate using piglet faeces as inoculum. Anaerobe 9: 175-180 https://doi.org/10.1016/S1075-9964(03)00083-0