Thermotropic Liquid Crystalline Behavior of Poly(1-cholesteryloxycarbonyloxy]ethylene] and Poly[1-(cholesteryloxycarbonylheptanoyloxy)ethylene]

폴리[1-(콜레스테릴옥시카보닐옥시)에틸렌]과 폴리[1-(콜레스테릴옥시카보닐헵타노일옥시)에틸렌]의 열방성 액정 거동

  • Jeong, Seung-Yong (Department of Polymer Science and Engineering, Dankook University) ;
  • Ma, Yung-Dae (Department of Polymer Science and Engineering, Dankook University)
  • 정승용 (단국대학교 고분자공학과) ;
  • 마영대 (단국대학교 고분자공학과)
  • Published : 2006.01.01

Abstract

Poly[1-(cholesteryloxycarbonyloxy)ethylene](PCOE) and poly[1-(cholesteryloxycarbonylheptanoyloxy)ethylene] (PCOSE) were prepared by reacting poly(vinyl alcohol) with cholesteryl chloroformate or 8-cholesteryloxycarbonylheptanoly] chloride (CH8C), and their thermal and optical properties were investigated. CH8C formed a monotropic cholesteric phase whereas PCOE and PCOSE exihibited enantiotropic cholesteric phases. Like in the case of CH8C, the optical pitch $(\lambda_m)$ of PCOSE decreased with increasing temperature. PCOE, contrast with PCOSE, did not display reflection colors, suggesting that the helical twisting power or the cholesteryl group highly depends on the length or the spacer joining the cholesteryl group to the main chain. The mesophase properties of PCOE and PCOSE were entirely different from those of poly $(cholesteryl-\omega-acryloyloxyalkanoates)$. The results indicate that the mode of chemical linkage of the side chain group with the main chain plays an important role in the formation, stabilization, and temperature dependence of $\lambda_m$ of the cholesteric mesophase.

폴리(비닐 알코올)을 콜레스테릴 클로로포메이트 또는 8-콜레스테릴옥시카보닐헵타노일 클로라이드(CH8C)와 반응시킴에 의해 폴리[1-(콜레스테릴옥시카보닐옥시)에틸렌](PCOE)와 폴리[1-콜레스테릴옥시카보닐헵타노일옥시)에틸렌](PCOSE)를 합성함과 동시에 이들의 열 및 광학 특성을 검토하였다. CH8C는 단방성 콜레스테릭 상을 형성하는 반면 PCOE와 PCOSE는 쌍방성 콜레스테릭 상들을 형성하였다. CH8C의 경우와 같이, PCOSE의 광학피치$(\lambda_m)$는 온도가 상승함에 따라 감소하였다. PCOE는 PCOSE와 달리 반사색깔을 나타내지 않았다. 이러한 사실은 콜레스테릴 그룹에 의한 나선의 비틀림력은 콜레스테릴 그룹과 주사슬을 연결하는 스페이서의 길이에 민감하게 의존함을 시사한다 PCOE와 PCOSE가 나타내는 액정 특성들은 폴리(콜레스테릴-$\omega$-아크릴로일옥시알카노에이트들)이 나타내는 액정 특성들과 전혀 다르다. 이러한 결과들은 곁사슬과 주사슬의 화학결합의 양식이 콜레스테릭 상의 형성능, 안정성 그리고 $\lambda_m$의 온도 의존성에 중요한 역할을 함을 시사한다.

Keywords

References

  1. G. Pfaff and P. Reynders, Chem. Rev., 99, 1963 (1999) https://doi.org/10.1021/cr970075u
  2. N. Tamaoki, Adv. Meter., 13, 1135 (2001) https://doi.org/10.1002/1521-4095(200108)13:15<1135::AID-ADMA1135>3.0.CO;2-S
  3. N. A. Plate, Comb-Shaped Polymers and Liquid Crystals, Plenum Press, New York, Cahp. 4, p. 197(1987)
  4. V. P. Shibaev and Ya. S. Freidzon, Side Chain Liquid Crystal Polymers, C. B. McArdle, Editor, Chapman and Hall, Inc., New York, Chap. 9, p 260 (1989)
  5. Ya. S. Freidzon and V. P. Shibaev, Liquid-Crystal polymers, N. A. Plate, Editor, Plenum Press, New York, Chap. 7, p. 251 (1993)
  6. S.-I. Yusa, K. Kakimoto, T. Yamamoto, and Y. Morishima, Macromol. Rapid Commun., 22, 253 (2001) https://doi.org/10.1002/1521-3927(20010201)22:4<253::AID-MARC253>3.0.CO;2-O
  7. S. H. Chen and M. L. Tsai, Macromolecules, 23, 5055 (1990) https://doi.org/10.1021/ma00226a002
  8. S. Krishnamurthy and S. H. Chen, Macromolecules, 24, 3481 (1991) https://doi.org/10.1021/ma00012a003
  9. M. Arnold, S. Poser, H. Fisher, W. Frank, and H. Utschick, Mecromol. Rapid Commun., 15, 487 (1994) https://doi.org/10.1002/marc.1994.030150607
  10. H. Fisher, S. Poser, M. Arnold, and W. Frank, Macromolecules, 27, 7133 (1994) https://doi.org/10.1021/ma00102a021
  11. H. Fisher, S. Poser, and M. Arnold, Macromolecules, 28, 6957 (1995) https://doi.org/10.1021/ma00124a036
  12. S. Weidner, D. Wolff, and J. Springer, Liq. Cryst., 20, 587 (1996) https://doi.org/10.1080/02678299608031147
  13. S. Weidner, D. Wolff, and J. Springer, Mecromol. Chem. Phys., 197, 1337 (1996) https://doi.org/10.1002/macp.1996.021970413
  14. S. Weidner, D. Wolff, and J. Springer, Liq. Cryst., 22, 193 (1997) https://doi.org/10.1080/026782997209568
  15. A. Yu. Bobrovsky, N. I. Boiko, and V. P. Shibaev, Liq. Cryst, 25, 679 (1998) https://doi.org/10.1080/026782998205697
  16. A. Yu. Bobrovsky, N. I. Boiko, and V. P. Shibaev, Liq. Cryst., 27, 57 (2000) https://doi.org/10.1080/026782900203218
  17. H. Hattori and T. Uryu, J. Polym. Sci.; Part A: Polym. Chem., 38, 887 (2000) https://doi.org/10.1002/(SICI)1099-0518(20000301)38:5<887::AID-POLA13>3.0.CO;2-G
  18. A. Stohr and P. Strohriegl, Macromol. Chem. Phys., 199, 751 (1998) https://doi.org/10.1002/(SICI)1521-3935(19980501)199:5<751::AID-MACP751>3.0.CO;2-3
  19. T. Mihara, T. Uedaira, and N. Koide, Liq. Cryst., 29, 855 (2002) https://doi.org/10.1080/02678290210143889
  20. J.-S. Hu, B.-Y. Zhang, Y.-G. Jia, and Y. Wang, Polym. J., 35, 160 (2003) https://doi.org/10.1295/polymj.35.160
  21. T. Kaneko, H. Nagasawa, J. P. Gong, and Y. Osada, Macromolecules, 37, 187 (2004) https://doi.org/10.1021/ma035272b
  22. E. B. Barmatov, M. V. Barmatova, B.-S. Moon, and J.-G. Park, Macromolecules, 37, 5490 (2004) https://doi.org/10.1021/ma034936e
  23. J.-S. Hu, B.-Y. Zhang, Z.-J. Liu, and B.-L. Zang, J. Appl. Polym. Sci., 86, 2670 (2002) https://doi.org/10.1002/app.11213
  24. B.-Y. Zhang, J.-S. Hu, Y.-G. Jia, and B.-G. Du, Macromol. Chem. Phys., 204, 2123 (2003) https://doi.org/10.1002/macp.200350072
  25. J.-S. Hu, B.-Y. Zhang, Y.-G. Jia, and S. Chen, Macromolecules, 36, 9060 (2003) https://doi.org/10.1021/ma034915k
  26. J.-S. Hu, B.-Y. Zhang, Y. Wang, and F.-B. Meng, J. Polym. Sci; Part A: Polym. Chem., 42, 3870 (2004) https://doi.org/10.1002/pola.20266
  27. B.-L. Zhang, J.-S. Hu, E-B. Meng, and B.-Y. Zhang, J. Appl. Polym. Sci, 93, 2511 (2004) https://doi.org/10.1002/app.20692
  28. H. Ogawa, E. Stiba1-Fisher, and H. Finkelmann, Macromol. Chem. Phys., 205, 593 (2004) https://doi.org/10.1002/macp.200300231
  29. J.-S. Hu, B.-Y. Zhang, Y. Guan, and X.-Z. He, J. Polym. Sci.; Part A: Polym. Chem., 42, 5262 (2004) https://doi.org/10.1002/pola.20390
  30. S.-W Cha, J.-I. Jin, M. Laguerre, M. F. Achard, and F. Hardouin, Liq. Cryst., 26, 1325 (1999) https://doi.org/10.1080/026782999203995
  31. S. M. Harwood, K. J. Toyne, J. W. Gray, M. Parsley, and G. W Gray, Liq. Cryst., 27, 443 (2000) https://doi.org/10.1080/026782900202624
  32. T. Tasaka, H. Okamoto, Y. Morita, K. Kasatani, and S. Takenaka, Mol. Cryst. Liq. Cryst, 404, 15 (2003) https://doi.org/10.1080/15421400390249790
  33. J.-I. Jin, Mol Cryst. Liq. Cryst., 267, 249 (1995) https://doi.org/10.1080/10587259508034002
  34. A. Sirigu, Liquid Crystallinity in Polymers, A. Ciferri, Editor, VCH Publishers, Inc., New York, Chap. 7, p. 261 (1991)
  35. D. J. Simmonds, Liquid Crystal Polymers: From Structures to Applications, A. A. Collyer, Editor, Elsevier Applied Science, London and New York, Chap. 7, p. 349 (1992)
  36. V. Percec and C. Pugh, Side Chain Liquid Crystal Polymers, C. B. McArdle, Editor, Chapman and Hall, Inc., New York, Chap. 3, p. 30 (1989)
  37. J. W. Y. Lam and B. Z. Tang, J. Polym. Sci.; Part A: Polym. Chem., 41, 2607 (2003) https://doi.org/10.1002/pola.10802
  38. J.-H. Kim and Y.-D. Ma, J. Korean Ind. Eng. Chem., 15, 113 (2004)
  39. Y.-D. Ma, J.-H. Kim, and J.-H. Choi, Industrial Technology Research Paper, Dankook University, 3, 27 (2003)
  40. J.-H. Kim, M. Sc. Dissertation, Dankook University, 2000
  41. S.-Y. Jeong, J.-H. Choi, and Y.-D. Ma, Polymer(Korea), 26, 523 (2002)
  42. Y.-D. Ma and S.-Y. Jeong, Industrial Technology Research Paper, Dankook University, 5, 21 (2004)
  43. J.-W. Lee, J.-I. Jin, M. F. Achard, and F. Hardouin, Liq. Cryst., 28, 663 (2001) https://doi.org/10.1080/02678290010028726
  44. D. Tsiourvas, T. Felekis, Z. Sideratou, and C. M. Paleos, Liq. Cryst., 31, 739 (2004) https://doi.org/10.1080/02678290410001681618
  45. G. W. Gray, J. Chem. Soc., 3733 (1956)
  46. S.-Y. Jeong and Y.-D. Ma, to be published
  47. S. Koltzenburg, F. Stelzer, and D. Nuyken, Macromol. Chem. Phys., 200, 821 (1999) https://doi.org/10.1002/(SICI)1521-3935(19990401)200:4<821::AID-MACP821>3.0.CO;2-A
  48. C. V. Yelamaggard, M. Mathews, T. Fujita, and N. Iyi, Liq. Cryst., 30, 1079 (2003) https://doi.org/10.1080/0267829031000152987
  49. J. W. Y. Lam, X. Kong, Y. Dong, K. K. L. Cheuk, K. Xu, and B. Z. Tang, Macromolevules, 33, 5027 (2000) https://doi.org/10.1021/ma992097j
  50. D. W. Lee, J.-I. Jin, M. Laguerre, M. F. Achard, and F. Hardouin, Liq. Cryst., 27, 145 (2000) https://doi.org/10.1080/026782900203326
  51. S.-W. Cha, J.-I. Jin, M. Laguerre, M. F. Achard, and F. Hardouin, Liq. Cryst., 26, 1325 (1999) https://doi.org/10.1080/026782999203995
  52. C. V. Yelamaggard, A. Srikrishna, D. S. Shankar Rao, and S. Krishna Prasad, Liq. Cryst., 26, 1547 (1999) https://doi.org/10.1080/026782999203887
  53. C. V. Yelamaggard, U. S. Hiremath, and D. S. Shankar Rae, Liq, Cryst., 28, 351 (2001) https://doi.org/10.1080/02678290010010815
  54. N. L. Morris, R. G. Zimmermann, G. B. Jameson, A. W. Dalziel, P. M. Reuss, and R. G. Weiss, J. Am. Chem. Soc., 110, 2177 (1988) https://doi.org/10.1021/ja00215a029
  55. R. Mukkamala, C. L. Burns, Jr., R. M. Catchings III, and R. G. Weiss, J. Am. Chem. Soc., 118, 9498 (1996) https://doi.org/10.1021/ja961665x
  56. T. Yamaguchi, T. Asada, H. Hayashi, and N. Nakamura, Macromolecules, 22, 1141 (1989) https://doi.org/10.1021/ma00193a024
  57. For a discussion of the spacer decoupling model and its limitation, see: reference 35
  58. C. Pugh and A. L. Kiste, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol. 3, Chap. III, p. 123 (1998)
  59. C. T. Imrie, F. E. Karasz, and G. S. Attard, Macromolecules, 26, 545 (1993) https://doi.org/10.1021/ma00055a021
  60. P. J. Shannon, Macromolecules, 16, 1677 (1983) https://doi.org/10.1021/ma00244a023
  61. E. M. Barrall IT and J. F. Johnson, J. Macromol. Sci.-Rev. Macromol. Chem., C17, 137 (1979)
  62. H. Finkelmann, Liquid Crystallinity in Polymers, A. Ciferri, Editor, VCH Publishers, New York, Chap. 8, p. 315 (1991)
  63. W. Maier, A. Saupe, and Z. Naturf, 13A, 564 (1958)
  64. W. Maier, A. Saupe, and Z. Naturf, 14A, 882 (1959)
  65. W. Maier, A. Saupe, and Z. Naturf, 15A, 287 (1960)
  66. C. Boeffel and H.-W. Spiess, Side Chain Liquid Crystal Polymers, C. B. McArdle, Editor, Chapmann and Hall, Inc., New York, Chap. 8, p. 224 (1989)
  67. J. W. Y. Lam, Y. Dong, K. K. K. Cheuk, J. Luo, Z. Xie, H. S. Kwok, Z. Mo, and B. Z. Tang, Macromolecules, 35, 1229 (2002) https://doi.org/10.1021/ma011406e
  68. W. R. Krigbaum, G. Brelsford, and A. Ciferri, Macromolecules, 22, 2487 (1989) https://doi.org/10.1021/ma00195a083
  69. A. Ciferri, Liquid Crystallinity in Polymers, A. Ciferri, Editor, VCH Publishers, New York, Chap. 6, p. 209 (1991)
  70. A. Takada, T. Fukuda, J. Watanabe, and T. Miyamoto, Macromolecules, 28, 3394 (1995) https://doi.org/10.1021/ma00113a045
  71. C. T. Imrie, F. E. Karasz, and G. S. Attard, Macromolecules, 26, 3803 (1993) https://doi.org/10.1021/ma00067a013
  72. A. A. Craig and C. T. Imrie, Macromolecules, 28, 3617 (1995) https://doi.org/10.1021/ma00114a015
  73. B. R. Maughon, M. Week, B. Mohr, and R. H. Grubbs, Macromolecules, 30, 257 (1997) https://doi.org/10.1021/ma960658q
  74. A. A. Craig and C. T. Imrie, Macromolecules, 32, 6215 (1999) https://doi.org/10.1021/ma990525f
  75. J. M. Rodriguez-Parada, R. Duran, and G. Wegner, Macromolecules, 22, 2507 (1989) https://doi.org/10.1021/ma00195a087
  76. V. Percec, A. D. Asandei, D. H. Hill, and C. Crawford, Macromolecules, 32, 2597 (1999) https://doi.org/10.1021/ma9900129
  77. B.-Q. Chen, A. Kameyama, and T. Nishikubo, Macromolecules, 32, 6485 (1999) https://doi.org/10.1021/ma990348i
  78. C. T. Imrie, T. Schleeh, F. E. Karasz, and G. S. Attard, Macromolecules, 26, 539 (1993) https://doi.org/10.1021/ma00055a020
  79. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer(Korea), 28, 92 (2004)
  80. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer(Korea), 28, 41 (2004)
  81. S. Bhattacharya and Y. Krishman-Ghosh, Mol. Cryst. Liq. Cryst., 381, 33 (2002) https://doi.org/10.1080/713738738
  82. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudholter, Liq. Cryst., 18, 851 (1995) https://doi.org/10.1080/02678299508036702
  83. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudholter, J. Mater. Chem., 6, 1469 (1996) https://doi.org/10.1039/jm9960601469
  84. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudholter, The Solid Films, 284-285, 308 (1996) https://doi.org/10.1016/S0040-6090(95)08330-8
  85. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudholter, Liq. Cryst., 27, 1515 (2000) https://doi.org/10.1080/026782900750018681
  86. N. Tamaoki, H. Matsuda, and A. Takahashi, Liq. Cryst., 28, 1823 (2001) https://doi.org/10.1080/02678290110082365
  87. S. Shubashree and B. K. Sadashiva, Mol. Cryst. Liq. Cryst., 411, 193 (2004) https://doi.org/10.1080/15421400490435035
  88. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudholter, Mol. Cryst. Liq. Cryst., 411, 193 (2004) https://doi.org/10.1080/15421400490435035
  89. S.-Y. Jeong, J.-H. Jeong, Y.-D. Ma, and Y. Tsujii, Polymer(Korea), 25, 279 (2001) https://doi.org/10.1016/0032-3861(84)90337-9
  90. E. M. Barrall II, Liquid Crystals, F. D. Saeva, Editor, Marcel Dekker, Inc., New York and Basel, Chap. 9, p. 335 (1979)
  91. J. Stumpe, Th. Fisher, and H. Menzel, Macromolecules, 29, 2831 (1996) https://doi.org/10.1021/ma951462d
  92. Ya. S. Freidzon, Ye. G. Tropsha, V. V Tsukruk, V. V. Shilov, V. P. Shibaev, and Yu. S. Lipatov, Polym. Sci., U.S.S.R(Engl. Tranl), 29, 1505 (1987) https://doi.org/10.1016/0032-3950(87)90409-6