DOI QR코드

DOI QR Code

Screening and Cultivation Characteristics of Alginate Degrading Bacteria

알긴산 분해 미생물의 탐색 및 생육 특성

  • Uo, Meung-Hee (Marine Bioindustry Course, Graduate School, Kangnung National University) ;
  • Joo, Dong-Sik (Division of Oriental Well-being, Hanzhong University) ;
  • Cho, Soon-Yeong (East Coastal Marine Bioresources Research Center, Kangnung National University)
  • 어명희 (강릉대학교 해양생물산업협동과정) ;
  • 주동식 (한중대학교 오리엔탈웰빙학부) ;
  • 조순영 (강릉대학교 동해안해양생물자원연구센터)
  • Published : 2006.01.01

Abstract

For the purpose of oligosaccharide production from alginate, the main component in cell walls of brown algae, the alginate degrading bacteria have been screened from the seaweeds and soil. Among the isolated 69 strains, one strain showing the highest degrading activity was selected and identified as Bacillus licheniformis strain. The adequate sodium alginate concentration for growing the Bacillus licheniformis was $2.0\%$. The effective nitrogen source is nutrient broth $(0.1\%)$, and optimum initial pH, NaCl concentration, temperature and incubation time to produce the alginate degrading enzyme were 7.5, $2\%,\;30{\pm}2^{\circ}C$, and 144 hrs, respectively.

해양생물 및 토양으로부터 총 619주의 알긴산 분해능을 나타내는 균주를 분리하여 이중 분해능이 강력했던 균주의 배양 조건 및 효소 생산 조건을 실험한 결과, 탄소원으로는 Na-alginate $2\%$, 질소원으로 nutrition broth $0.1\%$, NaCl 농도 $2\%$, pH 7.5, 배양 온도는 $30^{\circ}C$, 배양 시간은 $144\~150$ 시간이 최적 배양 및 효소 생산 조건이었다. 아울러 균체의 생리, 생화학적 특성을 분석한 결과, 본 실험 균주가 Bacillus licheniformis로 동정 되어 최종 Bacillus licheniformis AL-577로 명명하였다.

Keywords

References

  1. Fisher FG, Dorfel H. 1955. The polyuronic acids of brown algae. Part I. Z Physiol Chem 302: 186-203 https://doi.org/10.1515/bchm2.1955.302.1-2.186
  2. Hirst EL, Percival E, Wold JK. 1964. The structure of alginic acid. Part IV. Partial hydrolysis of the reduced poly-saccharide. J Chem Soc 8: 1493-1499
  3. Hirst EL, Ress DA. 1965. The structure of alginic acid. Part V. Isolation and unambiguous characterization of some hy-drolysis products of the methylated polysaccharide. J Chem Soc 7: 1182-1187
  4. Haug A, Larsen B, Smidsrod O. 1966. A study of con-stitution of alginic acid by partial acid hydrolysis Acta Chemica Scand 20: 183-190 https://doi.org/10.3891/acta.chem.scand.20-0183
  5. Haug A, Larsen B, Smidsrod O. 1967. Studies on the se-quence of uronic acid residues in alginic acid. Acta Chemica Scand 21: 691-704 https://doi.org/10.3891/acta.chem.scand.21-0691
  6. Penman A, Sanderson GR. 1972. A method for the deter-mination of uronic acid sequence in alginates. Carbohydrate Research 25: 273-282 https://doi.org/10.1016/S0008-6215(00)81637-7
  7. Guven KC, Ozsoy Y, Ulutin ON. 1991. Anticoagulant, fibrinotic and antiaggregant activity of carrageenans and alginic acid. Biotanica Marina 34: 429-435 https://doi.org/10.1515/botm.1991.34.5.429
  8. Joo DS, Lee JS, Park JJ, Cho SY, Kim HK, Lee EH. 1996. Preparation of oligosaccharides from alginic acid enzymeic hydrolysis. Korean J Food Sci Technol 28: 146-151
  9. Joo DS, Lee JS, Park JJ, Cho SY, Ahn CB, Lee EH. 1995. Purification and characterization of the intracellular al-ginase from Vibrio sp. AL-145. Kor J Appl Microbiol Biotechnol 23: 432-438
  10. Waksman SA, Allen MC. 1934. Decomposition of poly-uronides by fungi and bacteria. J Bacteriol 28: 213-220
  11. Eller J, Payne WJ. 1960. Studies on bacterial utilization of uronic acid. IV. Alginolytic and nuronic acid oxidizing isolates. J Bacteriol 80: 193-199
  12. Ando Y, Inoue K. 1961. Decompostion of alginic acid by microorganism-IV. On the Vibro-type bacteria newly iso-lated from the decaying Laminaria. Bull Jap Soc Sic Fish 27: 339-341 https://doi.org/10.2331/suisan.27.339
  13. Kashiwabara Y, Hiroshi S, Nisizawa K. 1969. Alginate lyases of Pseudomonas sp. J Biochem 66: 503-512 https://doi.org/10.1093/oxfordjournals.jbchem.a129175
  14. Davidson IW, Sutherland IW, Lawson CJ. 1976. Purification and properties of an alginate lyase from a marine bacterium. Biochem J 159: 707-713 https://doi.org/10.1042/bj1590707
  15. Stevens RA, Levin RE. 1967. Viscometric assay of bacterial alginase. Appl Environ Microbiol 31: 896-899
  16. Riesen VL. 1980. Digestion of algin by Pseudomonas malt-ophila and Pseudomonas putida. Appl Environ Microbiol 39: 92-96
  17. Linker A, Evans LR. 1984. Isolation and characterization of an alginase from mucoid stranis of Pseudomonas aer--oguinosa. J Bacteriol 159: 958-964
  18. 18.Hansen JB, Nakamura LK. 1985. Distribution of alginate lyase activity among strains of Bacillus circulans. Appl Environ Microbiol 49: 109-1021
  19. Dunne WM, Buckmire FL. 1985. Partial purification and characterization of a polymannuronic acid depolymerase produced by a mucoid strain of Pseudomonas aeroguinosa isolated from a patient with cystic fibrosis. Appl Environ Microbiol 50: 562-567
  20. Kim BJ, Ha SD, Lim DJ, Song C, Kong JY. 1998. Production of agarase from marine bacterium Bacillus cereus ASK202. Korean H Biotechnol Bioeng 13: 524-529
  21. Joo DS, Cho SY, Lee EH. 1993. Isolation of alginate- degrading bacteria and production of alginate degrading activities by the bacteria. Kor J Micorbiol Biotechnol 21: 207-211
  22. Joo DS, Cho SY, Lee EH. 1998. Preparation of agar hy-drolysates by agarase and functionality of the hydrolysates. Korean J Biotechnol Bioeng 13: 378-382
  23. Yang ST, Joo DS, Park JJ, Lee JS, Kim MS, Lee EH. 1996. Isolation and identification of carrageenan degrading bac-teria and optimization of enzyme production. Kor J Appl Microbiol Biotechol 24: 652-656
  24. Nelson NJ. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153: 375-380
  25. Somogyi M. 1952. Notes on sugar determination. J Biol Chem 195: 19-23
  26. Baumann P, Furniss AL, Lee JV. 1984. Genus I. Vibrio. In Bergey's Manual of Systematic Bacteriology. Krieg NR, ed. Williams & Wilkins, Baltimore, MD. Vol 1, p 518-538
  27. Gibbs BM, Skinner FA. 1966. Identification methods for microbiologist. Academic press, New York
  28. Yonemoto Y, Mutata K, Kimura A, Yamaguchi H, Okayama K. 1991. Bacterial alginate lyase; characterization of alginate lyase-producing bacteria and purification of the enzyme. J Ferm Bioeng 72: 152-157 https://doi.org/10.1016/0922-338X(91)90208-X
  29. Baxter RM. 1959. An interpretation of the effect of salts on the lactic dehydrogenase of Halobacterium salinarium. Can J Microbiol 5: 47-57 https://doi.org/10.1139/m59-006

Cited by

  1. Isolation and characterization of marine bacteria with alginate degrading activity vol.51, pp.4, 2015, https://doi.org/10.7845/kjm.2015.5034
  2. The Optimal Production and Characteristics of an Alginate-degrading Enzyme from Vibrio sp. PKA 1003 vol.42, pp.3, 2013, https://doi.org/10.3746/jkfn.2013.42.3.434
  3. Isolation and Characteristics of Alginate lyase Producing Microorganism: Sanguibacter keddieii NC9 vol.26, pp.6, 2011, https://doi.org/10.7841/ksbbj.2011.26.6.538
  4. Microbacterium oxydans, a novel alginate- and laminarin-degrading bacterium for the reutilization of brown-seaweed waste vol.130, 2013, https://doi.org/10.1016/j.jenvman.2013.08.064
  5. Optimal Culture Conditions for Production of Subtilisin-like Protease Inhibitor from Streptomyces thermocarboxydus C12 vol.37, pp.3, 2008, https://doi.org/10.3746/jkfn.2008.37.3.373
  6. Vibrio crassostreae PKA 1002의 알긴산 분해 조효소 생산 최적 조건과 조효소의 특성 vol.40, pp.3, 2006, https://doi.org/10.4014/kjmb.1206.06003
  7. Shewanella oneidensis PKA 1008의 알긴산 분해 조효소 생산 최적 조건과 조효소의 특성 vol.41, pp.3, 2013, https://doi.org/10.4014/kjmb.1212.12002