The Effect of Intravenous Contrast on SUV Value in $^{18}F$-FDG PET/CT using Diagnostic High Energy CT

진단용 고선량 CT를 이용한 $^{18}F$-FDG PET/CT 촬영시 정맥 조영제가 SUV 값에 미치는 영향

  • Jeong, Young-Jin (Department of Nuclear Medicine, Dong-A University College of Medicine) ;
  • Kang, Do-Young (Department of Nuclear Medicine, Dong-A University College of Medicine)
  • 정영진 (동아대학교 의과대학 핵의학교실) ;
  • 강도영 (동아대학교 의과대학 핵의학교실)
  • Published : 2006.06.30

Abstract

Purpose: According to the development of CT scanner in PET/CT system, the role of CT unit as a diagnostic tool has been more important. To improve the diagnostic ability of CT scanner, it is a key aspect that CT scanning has to be performed with high dose energy and intravenous (IV) contrast. So we investigated the effect of IV contrast media on the maximum SUV (maxSUV) of normal tissues and pathologic lesions using PET/CT scanner with high dose CT scanning. Materials & Methods: The study enrolled 13 patients who required PET/CT evaluation. At first, the patients were performed whole body non-contrast CT (NCCT-120 kVp, 130 mAs) scan. Then contrast enhanced CT (CECT) scan was performed immediately. Finally PET scan was followed. The PET omission data were reconstructed twice, once with the NCCT and again with the CECT. We measured the maxSUV of 10 different body regions that were considered as normal in ail patients. Also pathologic lesions were investigated. Results: There were not seen focal artifacts in PET images based on CT with IV contrast agent. Firstly, 130 normal regions in 13 patients were evaluated. The maxSUV was significantly different between two PET images (p<0.00)). The maxSUV was $1.1{\pm}0.5$ in PET images with CECT-corrected attenuation and $1.0{\pm}0.5$ in PET images with NCCI-corrected attenuation. The limit of agreement was $0.1{\pm}0.3$ in Bland-Altman analysis. Especially there were significant differences in 6 of 10 regions, apex and base of the right lung, ascending aorta, segment 6 & segment 8 of the liver and spleen (p<0.05). Secondly, 39 pathologic lesions were evaluated. The maxSUV was significantly different between two PET images (p<0.001). The maxSUV was $4.7{\pm}2.0$ in PET images with CECT-corrected attenuation and $4.4{\pm}2.0$ in PET images with NCCT-corrected attenuation. The limit of agreement was $0.4{\pm}0.8$ in Bland-Altman analysis. Conclusion: Although there were increases of maxSUVs in the PET images based on CT with IV contrast agent, it was very narrow in the range of limit of agreement. So there was no significant effect to clinical interpretation for PET images that were corrected attenuation with high dose CT using IV contrast.

목적 : 현재 PET/CT에서 CT의 역할은 단순히 감쇠 보정만을 위한 도구에서 진단을 위한 도구로 그 역할이 발전해 가고 있다. 따라서 양질의 CT 영상을 얻기 위한 정맥 조영제의 사용과 고선량의 CT 촬영이 요구되고 있으며 최근 조영제가 감쇠 보정한 PET 영상에 크게 영향을 미치지 않는다는 보고가 나오고 있다. 이에 본 연구에서는 고선량 CT에서 정맥 조영제의 사용이 감쇠 보정에 미치는 영향을 알아보았다. 대상 및 방법 : 총 13명의 환자에게 PET/CT 검사를 시행하였다. $^{18}F$-FDG를 주사하고 1시간 후에 촬영하였고, 첫 번째로 조영제의 사용 없이 CT(NECT-120 kVp, 130 mAs)를 촬영하고 이어서 바로 조영제를 사용하여 CT(CECT)를 촬영한 후 PET을 시행하였다. 각 환자마다 NECT와 CECT에 의해 각각 보정된 PET 영상에서 10곳의 신체 부위(병변이 없는 폐첨부, 폐기저부, 상행대동맥, 간의 상부 및 하부, 비장, 척추, 대퇴골두, 장요근과 10번 척추와 척추 인접 근육) 에서 HU와 maxSUV 값을 구하였고, 종양과 임파선 병변의 값도 함께 측정하였다. 결과: 조영제를 사용하였을 때 국소적으로 섭취가 증가된 곳은 관찰되지 않았다. 총 130개의 정상 조직의 maxSUV값을 측정하여 비교하였을 때, 조영제를 사용한 군과 사용하지 않은 군의 평균 maxSUV 값은 각각 $1.1{\pm}0.5,\;1.0{\pm}0.5$이고 두 군 사이에 p<0.001로 통계적으로 유의한 차이를 보였다. 정상 조직에 대해 Bland-Altman 분석을 시행하였을 때 일치의 한계 범위는 $0.1{\pm}0.3$ 이었다. 10개의 대상 영역 중 폐첨부, 폐하부, 상행대동맥, 간의 상부와 하부, 비장에서 maxSUV 값이 두군에서 유의한 차이(p<0.05)가 있었다. 총 39개 병변의 maxSUV 값을 측정하여 비교하였을 때, 조영제를 사용한 군과 사용하지 않은 군의 평균 maxSUV값은 각각 $4.7{\pm}2.0,\;4.4{\pm}2.0$이고 두 군 사이에 p<0.001로 통계적으로 유의한 차이를 보였다. 병변에 대해 Bland-Altman 분석을 시행하였을 때 일치의 한계 범위는 $0.4{\pm}0.8$ 이었다. 결론: 조영제로 인해 maxSUV의 값은 증가되었으나 정상 조직과 병변에서 일치의 한계 범위가 매우 좁았다. 따라서 진단용 고선량 CT를 이용한 PET/CT 촬영 시에 조영제의 사용이 임상 상황에서 판독에 큰 영향을 미치지 않는 것으로 생각된다.

Keywords

References

  1. Nakamoto Y, Osman M, Cohade C, Marshall LT, Links JM, Kohlmyer S, et al. PET/CT: comparison of quantitative tracer uptake between germanium and CT transmission attenuationcorrected images. J Nucl Med 2002;43:1137-43
  2. Beyer T, Antoch G, Muller S, Egelhof T, Freudenberg LS, Debatin J, et al. Acquisition protocol considerations for combined PET/CT imaging. J Nucl Med 2004;45 Suppl 1:25S-35S
  3. Antoch G, Freudenberg LS, Beyer T, Bockisch A, Debatin JF. To enhance or not to enhance? $^{18}F$-FDG and CT contrast agents in dual-modality $^{18}F$-FDG PET/CT. J Nucl Med 2004;45 Suppl 1:56S-65S
  4. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998;25: 2046-53 https://doi.org/10.1118/1.598392
  5. Visvikis D, Costa DC, Croasdale I, Lonn AH, Bomanji J, Gacinovic S, et al. CT-based attenuation correction in the calculation of semi-quantitative indices of [$^{18}F$]FDG uptake in PET. Eur J Nucl Med Mol Imaging 2003;30:344-53 https://doi.org/10.1007/s00259-002-1070-4
  6. Antoch G, Freudenberg LS, Egelhof T, Stattaus J, Jentzen W, Debatin JF, et al. Focal tracer uptake: a potential artifact in contrast-enhanced dual-modality PET/CT scans. J Nucl Med 2002; 43:1339-42
  7. Nakamoto Y, Chin BB, Kraitchman DL, Lawler LP, Marshall LT, Wahl RL. Effects of nonionic intravenous contrast agents at PET/CT imaging: phantom and canine studies. Radiology 2003;227: 817-24 https://doi.org/10.1148/radiol.2273020299
  8. Antoch G, Freudenberg LS, Stattaus J, Jentzen W, Mueller SP, Debatin JF, et al. Whole-body positron emission tomography-CT: optimized CT using oral and IV contrast materials. Am J Roentgenol 2002;179:1555-60 https://doi.org/10.2214/ajr.179.6.1791555
  9. Hubbell JH. Photon mass attenuation and mass energy-absorption coefficients for H, C, N, O, Ar, and seven mixtures from 0.1 keV to 20 MeV. Radiat Res 1977;70:58-81 https://doi.org/10.2307/3574732
  10. Mawlawi O, Erasmus JJ, Munden RF, Pan T, Knight AE, Macapinlac HA, et al. Quantifying the effect of IV contrast media on integrated PET/CT: clinical evaluation. Am J Roentgenol 2006;186:308-19 https://doi.org/10.2214/AJR.04.1740
  11. Yau YY, Chan WS, Tam YM, Vernon P, Wong S, Coel M, et al. Application of intravenous contrast in PET/CT: does it really introduce significant attenuation correction error- J Nucl Med 2005;46:283-91
  12. Beyer T, Antoch G, Bockisch A, Stattaus J. Optimized intravenous contrast administration for diagnostic whole-body $^{18}F$-FDG PET/CT. J Nucl Med 2005;46:429-35
  13. Antoch G, Kuehl H, Kanja J, Lauenstein TC, Schneemann H, Hauth E, et al. Dual-modality PET/CT scanning with negative oral contrast agent to avoid artifacts: introduction and evaluation. Radiology 2004;230:879-85 https://doi.org/10.1148/radiol.2303021287
  14. Violante MR, Dean PB. Improved detectability of VX2 carcinoma in the rabbit liver with contrast enhancement in computed tomography. Radiology 1980;134:237-9 https://doi.org/10.1148/radiology.134.1.7350611
  15. Berthelsen AK, Holm S, Loft A, Klausen TL, Andersen F, Hojgaard L. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients. Eur J Nucl Med Mol Imaging 2005;32:1167-75 https://doi.org/10.1007/s00259-005-1784-1
  16. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, et al. Measurement of clinical and subclinical tumour response using [$^{18}F$]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 1999;35:1773-82 https://doi.org/10.1016/S0959-8049(99)00229-4
  17. Mejia AA, Nakamura T, Masatoshi I, Hatazawa J, Masaki M, Watanuki S. Estimation of absorbed doses in humans due to intravenous administration of fluorine-18-fluorodeoxyglucose in PET studies. J Nucl Med 1991;32:699-706
  18. Brechtel K, Klein M, Vogel M, Mueller M, Aschoff P, Beyer T, et al. Optimized contrast-enhanced CT protocols for diagnostic whole-body $^{18}F$-FDG PET/CT: technical aspects of single-phase versus multiphase CT imaging. J Nucl Med 2006;47:470-6