A Study on Preparation of 3'-$[^{18}F]$Fluoro-3'-deoxythymidine and Its Biodistribution in 9L Glioma Bearing Rats

3'-$[^{18}F]$Fluoro-3'-deoxythymidine의 합성과 9L glioma 세포를 이식한 래트에서의 체내동태에 관한 연구

  • Shim, Ah-Young (Laboratory of Radiopharmaceuticals, Korea Institute of Radiological and Medical Sciences) ;
  • Moon, Byung-Seok (Laboratory of Radiopharmaceuticals, Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Tae-Sup (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Kyo-Chul (Laboratory of Radiopharmaceuticals, Korea Institute of Radiological and Medical Sciences) ;
  • An, Gwang-Il (Laboratory of Radiopharmaceuticals, Korea Institute of Radiological and Medical Sciences) ;
  • Yang, Seung-Dae (Laboratory of Radiopharmaceuticals, Korea Institute of Radiological and Medical Sciences) ;
  • Yu, Kook-Hyun (Department of Chemistry,Dongguk University) ;
  • Cheon, Gi-Jeong (Laboratory of Radiopharmaceuticals, Korea Institute of Radiological and Medical Sciences) ;
  • Choi, Chang-Woon (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences) ;
  • Lim, Sang-Moo (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences) ;
  • Chun, Kwon-Soo (Laboratory of Radiopharmaceuticals, Korea Institute of Radiological and Medical Sciences)
  • 심아영 (원자력의학원 RI 및 방사성의약품개발실) ;
  • 문병석 (원자력의학원 RI 및 방사성의약품개발실) ;
  • 이태섭 (원자력의학원 RI 및 핵의학연구실) ;
  • 이교철 (원자력의학원 RI 및 방사성의약품개발실) ;
  • 안광일 (원자력의학원 RI 및 방사성의약품개발실) ;
  • 양승대 (원자력의학원 RI 및 방사성의약품개발실) ;
  • 유국현 (동국대학교 화학과) ;
  • 천기정 (원자력의학원 RI 및 방사성의약품개발실) ;
  • 최창운 (원자력의학원 RI 및 핵의학연구실) ;
  • 임상무 (원자력의학원 RI 및 핵의학연구실) ;
  • 전권수 (원자력의학원 RI 및 방사성의약품개발실)
  • Published : 2006.10.31

Abstract

Purpose: Several radioisotope-labeled thymidine derivatives such as $[^{11}C]$thymidine was developed to demonstrate cell proliferation in tumor. But it is difficult to track metabolism with $[^{11}C]$thymidine due to rapid in vivo degradation and its short physical half-life. 3'-$[^{18}F]$fluoro-3'-deoxythymidine ($[^{18}F]$FLT) was reported to have the longer half life of fluorine-18 and the lack of metabolic degradation in vivo. Here, we described the synthesis of the 3'-$[^{18}F]$fluoro-3'-deoxythymidine ($[^{18}F]$FLT) and compared with $([^{18}F]FET)\;and\;([^{18}F]FDG)$ in cultured 9L cell and obtained the biodistribution and PET image in 9L tumor hearing rats. Material and Methods: For the synthesis of $[^{18}F]$FLT, 3-N-tert-butoxycarbonyl-(5'-O-(4,4'-dimet hoxytriphenylmethyl)-2'-deoxy-3'-O-(4-nitrobenzenesulfonyl)-${\beta}$-D-threopentofuranosyl)thymine was used as a FLT precursor, on which the tert-butyloxycarbonyl group was introduced to protect N3-position and nitrobenzenesulfonyl group. Radiolabeling of nosyl substitued precursor with $^{18}F$ was performed in acetonitrile at $120^{\circ}C$ and deproteced with 0.5 N HCI. The cell uptake was measured in cultured 9L glioma cell. The biodistribution was evaluated in 9L tumor bearing rats after intravenous injection at 10 min, 30 min, 60 min and 120 min and obtained PET image 60 minutes after injection. Results: The radiochemical yield was about 20-30% and radiochemical purity was more than 95% after HPLC purification. Cellular uptake of $[^{18}F]$FLT was increased as time elapsed. At 120 min post-injection, the ratios of tumor/blood, tumor/muscle and tumor/brain were $1.61{\pm}0.34,\;1.70{\pm}0.30\;and\;9.33{\pm}2.22$, respectively. The 9L tumor was well visualized at 60 min post injection in PET image. Conclusion: The uptake of $[^{18}F]$FLT in tumor was higher than in normal brain and PET image of $[^{18}F]$FLT was acceptable. These results suggest the possibility of $[^{18}F]$FLT at an imaging agent for brain tumor.

목적: 종양 내 양전자방출단층촬영으로 세포증식을 영상화하기 위해 $[^{11}C]$thymidine과 같은 다양한 방사성의약품이 개발되었다. 그러나 $[^{11}C]$thymidine은 C-11의 짧은 반감기와 대사과정의 추적에 문제점을 가지고 있어 문제점을 해결하기 위해 $[^{11}C]$thymidine을 대신하여 3'-$[^{18}F]$fluoro-3'-deoxythymidine ($[^{18}F]$FLT)이 개발이 보고되었다. 본 연구에서는 thymidine을 출발물질로 하여 총 6 단계에 걸쳐 3'-$[^{18}F]$fluoro-3'-deoxythymidine ($[^{18}F]$FLT)의 합성 하였다. 또한 합성된 $[^{18}F]$FLT를 이용하여 FET, FDG의 9L 세포에서 세포섭취율을 비교하였으며 생체 분포 및 양전자방출단층촬영 영상을 얻어 유용성을 검증하고자 하였다. 대상 및 방법: $[^{18}F]$FLT 전구체 3-N-tert-butoxycarbonyl-(5'-O-(4,4'-dimet hoxytriphenylmethyl)-2'-deoxy-3'-O-(4-nitrobenzenesulfonyl)-${\beta}$-D-threopentofuranosyl)thymine는 N3-위치에 tert-butoxycarbony (t-Boc)기를 도입하고, 3'-위치에 친핵성 치환반응을 유도하기 위한 이탈기로 nitrobenzenesulfonyl기를 도입하였다. 방사성동위원소 $^{18}F$의 표지는 전구체를 $120^{\circ}C$, acetonitrile 용매하에서 수행하였고 0.5 N HCl로 보호기를 제거하였다. 표지된 $[^{18}F]$FLT를 alumina N step-pak과 고성능액체크로마토그래피를 이용하여 정제하였다. $[^{18}F]$FLT의 세포섭취율은 $[^{18}F]FET,\;[^{18}F]FDG$와 9L 세포에서 비교하였고, 체내동태는 종양세포를 이식한 쥐를 이용하여 10분, 30분, 60분, 120분에 측정하였으며, 양전자방출단층촬영 영상을 얻었다. 결과: HPLC 분리 후 $[^{18}F]$FLT의 방사화학적 수율은 약 20-30% 정도였고 방사화학적 순도는 95% 이상이었다. 시험관 섭취율에서 $[^{18}F]$FLT는 시간이 지남에 따라 증가하는 양상을 보였고 생체분포 실험에서 주사 후 120분에서 tumor/blood, tumor/muscle, tumor/brain의 비율은 $1.61{\pm}0.34,\;1.70{pm}0.30,\;9.33{\pm}2.22$를 나타내었다. 또한, 양전자방출단층촬영 결과 종양에 국소화된 영상을 얻었다. 결론: $[^{18}F]$FLT의 종양세포 섭취는 정상 뇌에 비해 월등히 높게 나타났으며, 양전자방출단층 촬영 결과는 뇌종양 진단을 위한 방사성의약품으로 유용하게 이용될 수 있을 것으로 기대된다.

Keywords

References

  1. Eriksson S, Kierdaszuk B, Munch-Peterson B, Oberg B, Johnsson NG. Comparison of the substrate specificities of human thymidine kinase 1 and 2 and deoxycytidine kinase toward antiviral and cytostatic nucleoside analogs. Biophys Res Commun 1991;176: 586-92 https://doi.org/10.1016/S0006-291X(05)80224-4
  2. Kong XB, Zhu QY, Vidal PM, Watanabe KA, Polsky B, Armstrong D, et al.. Comparison of anti-human immunodeficiency virus activities, cellular ransport, and plasma and intracellular pharmacokinatics of 3-fluoro-3-deoxythymidine and 3-azido-3- deoxytbymidine. Antimicrob Agent Chemother Biochem 1992; 36:808-18 https://doi.org/10.1128/AAC.36.4.808
  3. Shields AF, Grierson JR, Dohmen BR, Machulla H-J, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [$^{18}F$]FLT and positron emission tomography. Nat Med 1998;4:1334-6 https://doi.org/10.1038/3337
  4. Eary JF, Mankoff DA, Spence AM, Berger MS, Olshen A, Link JM, et al. 2-[$^{11}C$]thymidine imaging of malignant brain tumors. Cancer Res 1999;59:615-21
  5. Martiat P, Ferrant A, Labar D, Cogneau A, Boc C, Michel JL, et al. In vivo measurement of carbon-11 thymidine uptake in non-Hodgikin's lymphoma using positron emission tomography. J Nucl Med 1998;29:1633-7
  6. Shields AF, Mankoff DA, Link JM, Graham MM, Eary JF, Kozawa SM, et al. Carbon-11-thymidine and FDG to measure therapy response. J Nucl Med 1998;39:1757-62
  7. Tjuvajev JG, Macapinlac HA, Daghighian F, Scott AM, Ginos JZ, Finn RD, et al. Imaging of the brain tumor proliferative activity with [$^{131}I$]iododeoxyuridine. J Nucl Med 1994;35:1407-17
  8. Tjuvajev J, Muraki A, Ginos J, Berk J, Koutcher D, Ballon B. Iododeoxyuridine (IUDR) uptake and retention as a measure of tumor growth. J Nucl Med 1993;34:1152-61
  9. Toyoharaa J, Wakib A, Takamatsub S, Yonekurab Y, Magatac Y, Fujibayashib Y. Basis of FLT as a cell proliferation marker: comparative uptake studies with [$^{3}H$]thymidine and [$^{3}H$]arabinothymidine, and cell-analysis in 22 asynchronously growing tumor cell lines. Nucl Med Biol 2001;29:281-7
  10. Grierson JR, Shields AF. Radiosynthesis of 3-deoxy-3 -[$^{18}F$]fluorothymidine: [$^{18}F$]FLT for imaging of cellular proliferation in vivo. Nucl Med Biol 2000;27:143-56 https://doi.org/10.1016/S0969-8051(99)00104-3
  11. Martin SJ, Eisenbarth JA, Wagner-Utermann U, Mier W, Henze M, Pritzkow H, et al. A new precursor for the radiosynthesis of [$^{18}F$]FLT. Nucl Med Biol 2002;29:263-73 https://doi.org/10.1016/S0969-8051(01)00289-X
  12. Wodarski C, Eisenbarth J, Weber K, Henze M, Haberkorn U, Eisenhut M. Synthesis of 3'-deoxy-3'-[$^{18}F$fluorothymidine with 2,3'-anthydro-5'-O-(4,4'-dimethoxytrityl) thymidine. J Labelled Cpd Radiopharm 2000:43:1211-8 https://doi.org/10.1002/1099-1344(20001030)43:12<1211::AID-JLCR408>3.0.CO;2-#
  13. Moon BS, Kim SW, Lee TS, Ahn SH, Lee KC, An GI, et al. Synthesis of O-(3-[$^{18}F$]fluoropropyl)-L-tyrosine (L-[$^{18}F$]FPT) and its biological evaluation in 9L tumor bearing rat. Bull Korean Chem Soc 2005;26:91-6 https://doi.org/10.5012/bkcs.2005.26.1.091
  14. Higashi K, Clavo AC, Wahl RL. Does FDG uptake measure proliferative activity of human cancer cells? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med 1993;34:414-9
  15. Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 2002;43:1210-7
  16. Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA. Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med 2003;44:2027-32
  17. Lu L, Samuelsson L, Bergstrom M, Sato K, Fasth KJ, Langstrom B. Rat studies comparing $^{11}C$-FMAU, $^{18}F$-FLT, and $^{76}Br$-BFU as proliferation markers. J Nucl Med 2002;43:1688-98
  18. Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, et al. Imaging proliferation in brain tumors with $^{18}F$-FLT PET: comparison with $^{18}F$-FDG. J Nucl Med 2005;46:945-52
  19. Choi SJ, Kim JS, Kim JH, Oh SJ, Lee JG, Kim CJ, et al. 3′-deoxy-3-[$^{18}F$]fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging 2005;32:653-9 https://doi.org/10.1007/s00259-004-1742-3
  20. Mangner TJ, Klecker RW, Anderson L, Shields AF. Synthesis of 2'-deoxy -2'-[$^{18}F$]fluoro-beta-D-arabinofuranosyl nucleosides, [$^{18}F$]FAU, [$^{18}F$]FMAU, [$^{18}F$]FBAU and [$^{18}F$]FIAU, as potential PET agents for imaging cellular proliferation. Synthesis of [$^{18}F$]labelled FAU, FMAU, FBAU, FlAU. Nucl Med Biol 2003;30:215-24 https://doi.org/10.1016/S0969-8051(02)00445-6