DOI QR코드

DOI QR Code

The characteristics of nonlinear magneto-optical effect based on coherent population trapping in the D1 line of Rh atoms

87Rb D1 전이선에서 원자결맞음을 이용한 비선형 광자기 효과 신호의 특성

  • Lee, L. (Division of Physical Metrology, Korea Research Institute of Standards and Science) ;
  • Moon, H.S. (Division of Physical Metrology, Korea Research Institute of Standards and Science) ;
  • Kim, J.B. (Department of Physics Education, Korea National University of Education)
  • 이림 (한국표준과학연구원 기반표준부) ;
  • 문한섭 (한국표준과학연구원 기반표준부) ;
  • 김중복 (한국교원대학교 물리교육과)
  • Published : 2006.02.01

Abstract

We investigated the characteristics of the nonlinear magneto-optic effect (NMOE) depend on the transitions, the laser intensity and the temperature of the vapor cell, in the $D_1$ transition of $^{87}Rb$ atoms by using the Rb vapor cell contained with buffer gas of Ne 6.7 kPa. The size and the width of NMOE signal were increased according to the light intensity and temperature in the transition of F=2$\to$F'=2. However, In the case of using the F=2$\to$F'=1 transition, the size of the signal could be increased according to the light intensity without additional broadening of the width. We confirmed that the sensitivity of detecting small magnetic flux improved in this transition, and explained these effects by the different of the CPT configuration between Zeeman sublevels. At the optimal condition in experiment, the sensitivity of this system was evaluated less then $70pT/\sqrt{Hz}$.

우리는 6.7 kPa의 네온 버퍼가스가 포함된 루비듐 증기셀을 이용하여 $^{87}Rb$원자 $D_1$ 전이선에서 레이저의 세기, 증기 셀의 온도, 전이 선에 따른 비선형 광자기 신호(NMOE)의 특성을 조사하였다. 비선형 광자기 신호는 레이저의 세기와 증기셀의 온도가 증가함에 따라 F=2$\to$F'=2 전이선에서는 광자기 신호의 크기와 선폭이 증가하였지만, F=2$\to$F'=1 전이선에서는 확대 없이 신호의 크기만 증가됨으로써 자장 측정 민감도가 향상되는 것을 확인하였으며, 이러한 효과를 자기부준위 사이에서의 원자결맞음 구도의 차이로 설명하였다. 관측된 최적 조건에서 자기장변화에 대한 민감도는 $70pT/\sqrt{Hz}$ 이하로 계산되었다.

Keywords

References

  1. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, 'Resonant nonlinear magneto-optical effects in atoms', Rev. Mod. Phys., vol. 74, no.4, pp.1153-1201, 2002 https://doi.org/10.1103/RevModPhys.74.1153
  2. M. Fleischhauer, A. B. Matsko, and M. O. Scully, 'Quantum limit of optical magnetometry in the presence of ac Stark shifts', Phys. Rev. A, vol.62, no.1, pp. 013808-1013808-10, 2000 https://doi.org/10.1103/PhysRevA.62.013808
  3. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalils, 'A subfemtotesla multichannel atomic magnetometer', Nature, vol. 422, no. 6932, pp. 596-599, 2003 https://doi.org/10.1038/nature01484
  4. I. Novikova, A. B. Matsko, V. A. Sautenkov, V. L. Velichansky, G. R Welch, and M. O. Scully, 'Ac-Stark Shifts in the nonlinear Faraday effect', Opt. Lett., vol. 25, no. 22, pp. 1651-, 2000 https://doi.org/10.1364/OL.25.001651
  5. D. Budker, V. Yachchuk, and M. Zolotorev, 'Nonlinear magneto-optic effects with ultranarrow witdths', Phys. Rev. Lett., vol. 81, no. 26, pp. 5788-5791, 1998 https://doi.org/10.1103/PhysRevLett.81.5788
  6. 문한섭, 이원규, 안문희, 김중복, 'Rb D1 전이선에서 원자결맞음에 의한 비선형 광자기 효과', 한국광학회지, 제 16권, 1호, pp. 7-12, 2005
  7. E. Taskova, S. Gateva, E. Alipieva, K. Kowalski, M. Glodz, and J. Szonert, 'NonlinearFaraday rotation for optical limitation', Appl. Opt., vol. 43, no. 21, pp. 4178-4181, (2004) https://doi.org/10.1364/AO.43.004178
  8. E. Alipieva, S. Gateva, E. Taskova, and S. Cartaleva, ' Narrow structure in the coherent population trapping resonance in rubidium', Opt. Lett., vol. 28, no. 19, pp. 1817- 1819, 2003 https://doi.org/10.1364/OL.28.001817
  9. C. Affolderbach, M. Stahler, S. Knappe, and R. Wynands, 'An all-optical, high-sensitivity magnetic gradiometer', Appl. Phys. B, vol. 75, no. 6-7, pp. 605-612, 2002 https://doi.org/10.1007/s00340-002-0959-8
  10. Szymon Pustelny, Wojciech Lewoczko, and Wojciench Gawlik, 'Density effects in forward scattering of resonant light in rubidium vapor', J. Opt. Soc. Am. B, vol. 22, no. 1, pp. 37-43, 2005 https://doi.org/10.1364/JOSAB.22.000037