DOI QR코드

DOI QR Code

Fabrication of Solid Oxide Fuel Cells with Electron Beam Physical Vapor Deposition: I. Preparation of Thin Electrolyte Film of YSZ

전자빔 물리증착을 이용한 고체 산화물 연료전지의 제조 : I. YSZ 박막 전해질의 제조

  • Kim, Hyoungchul (Nano-Materials Research Center, Korea Institute of Science and Technology) ;
  • Koo, Myeong-Seo (Nano-Materials Research Center, Korea Institute of Science and Technology) ;
  • Park, Jong-Ku (Nano-Materials Research Center, Korea Institute of Science and Technology) ;
  • Jung, Hwa-Young (Nano-Materials Research Center, Korea Institute of Science and Technology) ;
  • Kim, Joosun (Nano-Materials Research Center, Korea Institute of Science and Technology) ;
  • Lee, Hae-Weon (Nano-Materials Research Center, Korea Institute of Science and Technology) ;
  • Lee, Jong-Ho (Nano-Materials Research Center, Korea Institute of Science and Technology)
  • 김형철 (한국과학기술연구원 나노재료연구센터) ;
  • 구명서 (한국과학기술연구원 나노재료연구센터) ;
  • 박종구 (한국과학기술연구원 나노재료연구센터) ;
  • 정화영 (한국과학기술연구원 나노재료연구센터) ;
  • 김주선 (한국과학기술연구원 나노재료연구센터) ;
  • 이해원 (한국과학기술연구원 나노재료연구센터) ;
  • 이종호 (한국과학기술연구원 나노재료연구센터)
  • Published : 2006.02.01

Abstract

Electron Beam Physical Vapor Deposition (EB-PVD) was applied to fabricate a thin film YSZ electrolyte with large area on the porous NiO-YSZ anode substrate. Microstructural and thermal stability of the as-deposited electrolyte film was investigated via SEM and XRD analysis. In order to obtain an optimized YSZ film with high stability, both temperature and surface roughness of substrate were varied. A structurally homogeneous YSZ film with large area of $12\times12\;cm^2$ and high thermal stability up to $900^{\circ}C$ was fabricated at the substrate temperature of $T_s/T_m$ higher than 0.4. The smoother surface was proved to give the better film quality. Precise control of heating and cooling rate of the anode substrate was necessary to obtain a very dense YSZ electrolyte with high thermal stability, which affords to survive after post heat treatment for fabrication a cathode layer on it as well as after long time operation of solid oxide fuel cell at high temperature.

Keywords

References

  1. S. C. Singhal and K. Kendall, 'High Temperature Solid Oxide Fuel Cells : Fundamentals,' Design and Applications, Elsevier Ltd. (2003)
  2. N. Q. Minh and T. Takahashi, 'Science and Technology of Ceramic Fuel Cells,' Elsevier Ltd., Amsterdam, The Netherlands (1995)
  3. L. Carrrette, K. A. Friedrich, and U. Stimming, 'Fuel Cells- Fundamentals and Applications,' Fuel Cells, 15-39 (2001)
  4. S. P. S Badwal and K. Foger, 'Solid Oxide Electrolyte Fuel Cell Review,' Ceram. Int'l, 22 257-67 (1996) https://doi.org/10.1016/0272-8842(95)00101-8
  5. H. Yokokawa, N. Sakai, T. Horita, and K. Yamaji, 'Recent Developments in Solid Oxide Fuel Cell Materials,' Fuel Cells, 1 117-31 (2001) https://doi.org/10.1002/1615-6854(200107)1:2<117::AID-FUCE117>3.0.CO;2-Y
  6. H. Sasaki, S. Otoshi, M. Suzuki, T. Sogi, A. Kajimura, N. Sugiuara, and M. Ippommatsu, 'Fabrication of High Power Density Tubular Type Solid Oxide Fuel Cells,' Solid State Ionics, 72 253-56 (1994) https://doi.org/10.1016/0167-2738(94)90155-4
  7. H. R. Gruner and H. Tannenberger, 'SOFC Elements by Vacuum-Plasma-Spraying (VPS),' pp. 611-16 First European Solid Oxide Fuel Cell Forum. Ed. by U. Bossel. European SOFC Forum Secretariat, Lucerne, Switzerland (1994)
  8. K. Honegger, E. Batawi, C. Sprecher, and R. Diethelm, 'Thin Film Solid Oxide Fuel Cell (SOFC) for Intermediate Temperature Operation'; pp. 321-25 in Proceedings of SOFC V (Aachen, Germany, 1997). Ed. by U. Stimming, S. C. Singhal, H. Tagawa, and W. Lehner, Electrochemical Society, Pennington, NJ (1997)
  9. P. Sarkar and P. S. Nicholson, 'Electrophoretic Deposition (EPD) : Mechanism, Kinetics, and Application to Ceramics,' J. Am. Ceram. Soc., 79 1987-2002 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08929.x
  10. J. Will, M. K. M. Hruschka, L. Gubler, and L. J. Gauckler, 'Electrophoretic Deposition of Zirconia on Porous Anodic Substrates,' J. Am. Ceram. Soc., 84 328-32 (2001) https://doi.org/10.1111/j.1151-2916.2001.tb00658.x
  11. D. L. Smith, 'Thin Film Deposition : Principles and Practice,' McGraw-Hill Inc. (1997)
  12. H. Y. Jung, T. W. Roh, J. Kim, H.-W. Lee, H. Ko, K. C. Lee, and J.-H. Lee, 'Power Generating Chracteristics of Anode- Supported SOFC Fabricated by Uni-Axial Pressing and Screen Printing(in Korean),' J. Kor. Ceram. Soc., 41 [6] 456-63 (2004) https://doi.org/10.4191/KCERS.2004.41.6.456
  13. H. Y. Jung, W. S. Kim, S. H. Choi, J. Kim, H.-W. Lee, H. Ko, K. C. Lee, and J.-H. Lee, 'Fabrication of Small SOFC Stack Based on Anode-Supported Unit Cells and Its Power Generating Characteristics(in Korean),' J. Kor. Ceram. Soc., 41 [10] 777-82 (2004) https://doi.org/10.4191/KCERS.2004.41.10.777
  14. H. Kim, J.-K. Park, H. Y. Jung, J.-W. Son, J. Kim, H.-W. Lee, and J.-H. Lee, 'Deposition with Electron Beam: II. Electrochemical Performance(in Korean),' J. Kor. Ceram. Soc., Submitted