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SOME EXISTENCE THEOREMS FOR FUNCTIONAL
EQUATIONS ARISING IN DYNAMIC PROGRAMMING

ZEQING L1u, JEONG SHEOK UME*, AND SHIN MIN KANG

ABSTRACT. The existence, uniqueness and iterative approximation
of solutions for a few classes of functional equations arising in dy-
namic programming of multistage decision processes are discussed.
The results presented in this paper extend, improve and unify the
results due to Bellman [2, 3], Bhakta-Choudhury [6], Bhakta-Mitra
[7], and Liu [12].

1. Introduction and preliminaries

Bellman [2, 3] first studied the existence of solutions for several classes
of functional equations arising in dynamic programming. Bellman and
Roosta [5] constructed an approximation solution for a class of the
infinite-stage equation arising in dynamic programming. Bellman and
Lee [4] pointed out that the basic form of the functional equations of
dynamic programming is

(1.1) f(@) = sup H(z,y, (T (@,y)), = €85,

where z and y represent the state and decision vectors, respectively, T
represents the transformation of the process, and f(x) represents the op-
timal return function with initial state x. Baskaran and Subrahmanyam
[1], Bhakta and Choudhury [6], Bhakta and Mitra [7], Chang [8], Chang
and Ma [9], Liu [10]-[12] and others extended the results of [2]-[5] in
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various directions. Bhakta and Mitra [7] established the existence and
uniqueness of solutions for the functional equation:

(1.2) f(=) = sup{u(z,y) + f(T(z,9))}, z€S.
yeD

Under suitable conditions, Bellman [2], Bhakta and Choudhury [6] and
Liu [12] obtained the existence or uniqueness of solutions for the func-
tional equations:

(13) @)= inf max{u(e.0), f(T(@,)}, 2 € S,
+oo
(@) = i {u(o,0) + o) [ pls = v)als)ds
(1.4) = v

+o0 y
4 £(0) / o(s)ds + /0 £y — $)a(s)ds]}.

Inspired and motivated by the work in [1]-[12], in this paper, we prove
the existence, uniqueness and iterative approximation of solutions for the
functional equations (1.4)-(1.6):

(1'5) f(x) = OptyeD{u(xay) =+ f(T(x,y))}, x €5,

(1.6) f(z) = optyep max{u(z,y), f(T(z,y))}, z €5,

where the opt denotes the sup or inf. The results presented in this paper
extend, improve and unify the corresponding results of Bellman [2, 3],
Bhakta-Choudhury [6], Bhakta-Mitra [7], and Liu [12].

Throughout this paper, N denotes the set of all positive integers,
R = (—00,+00) and RT = [0, +00). Define

®; ={p:¢: RT — R" is nondecreasing},
®y={p:p€ P and lim o"(t) =0 for ¢t > 0},
O3 ={p:¢p € ®;,0(0) =0 and ¢ is right continuous at 0}.

REMARK 1.1. It is easy to see that ¢ € ®5 implies () < t for any
t>0.
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Let us recall the following concept. Let X be a nonempty set and let
{dn}nen be a countable family of pseudometrics on X such that for any
distinct z,y € X, dig(x,y) # 0 for some k € N. Define

o0

& dr(z,y)
d = g~k 2B/ 1 X.
(z,9) 321 T+ de(z, ) for all z,y €

It is clear that d is a metric on X. A sequence {Zn }nen in X converges
to a point # € X if and only if di(z,,x) — 0 as n — 0o and {2, }nen is
a Cauchy sequence if and only if di(zp, ) — 0 as n,m — oo for each
keN.

LeEmMA 1.1. ([12]) Let a,b,c be in R. Then

lopt {a,c} —opt {b,c}| < |a -],

2. Existence and uniqueness theorems

Let (X, ||-]]) and (Y, ||-||) be real Banach spaces, S C X be the state
space, and D C Y be the decision space. Denote by BB(S) the set of
all real-valued mappings on S that are bounded on bounded subsets of
S. It is easy to verify that BB(S) is a linear space over R under usual
definitions of addition and multiplication by scalars. For any &k € N and

a,b € BB(S), let

di(a,b) =sup{la(z) — b(z)| : = € B(0,k)},
dkab
22 k1+dkab)

where B(0,k) = {z: 2 € S and ||z| < k}. Clearly, {dx }xen is a count-
able family of pseudometrics on BB(S) and (BB(S),d) is a complete
metric space.

THEOREM 2.1. Letu:SxD — R, T:5x D — S be mappings and

ap(x) = sgp u(zx, y),

(2.1) an(z) = sug{u(:c,y) +an_1(T(z,y))}, €S, neN.
ye
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If there exist ¢ € &5 and ¢ € &, such that

(2.2) IT(z, y)|| < @(llzl) for all (z,y) € S x D,
(23) u(z, y)| < (|[z]]) for all (z,y) € S x D,
and
(2.4) i (" (t)) < oo for all t > 0,

n=0

then the functional equation (1.2) possesses a solution w € BB(S) such
that

lim w(z,) =0 for any g € S,
(2.5) oo '
{Yn}nen € D, zp =T (Tpn-1,Yn), N € N.

Moreover, the solution w of the functional equation (1.2) is also unique
with respect to (2.5).

Proof. Put

H(z,y,a) = u(z,y) + a(T(z,y)) for all (z,y,a) € S x D x BB(S),
fa{z) = sup H(z,y,a) for all (z,a) € S x BB(S).
ye€D

For any k € N,y € D and z € B(0,k), by (2.2), (2.3), and Remark 1.1,
we have

(2.6) lu(z, y)| < p(llzll) < $E), 1T )l < ellel) < k).

Using (2.6) and the definition of f, we infer that fa € BB(S) for any
a € BB(S). That is, f maps BB(S) into BB(S).

Now we prove that f is a nonexpansive mapping in BB(S). For any
a,b € BB(S), e >0, k € N and z € B(0,k), there exist y,z € D such
that

fa(:c)—6<H(m,y,a), fb(l‘)—€<H(£L‘,Z,b),

(27) fa(z) > H(z, z,a), fbo(z) > H(z,y,b).
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It follows from (2.7) that

|fa(z) — fb(z)|
< max{|H(z,z,a) — H(z,2,b)|,|H(z,y,a) — H(z,y,b)|} + ¢

= max{|a(T(z,2) — b(T(z,2))|, |a(T(z,y)) = b(T(z,y))} +¢
S dk(a’ b) + g,

which implies that di(fa, fb) < di(a,b) + €. Letting € — 0, we have
dix(fa, fb) < di(a,b) for all a,b € BB(S), k€ N,

which yields that

o, 1) = 32t SR <5 s S — ey

1+ de(fa, fb) ~ 1+ dy.(a,b)
That is,
(2.8) d(fa, fb) < d(a,b) for all a,b e BB(S).
We claim that for any n > 0,
(2.9) lan(z)| < Zzﬁ(tp’(”x]])) forallz € S.

i=0
In fact, by (2.3) we conclude that
—(llzl)) < u(z,y) < P(|lz]]) for all (z,y) € S x D,
which means that

lao(z)| = I:lelp u(z,y)| < ¢(|lz]) for all z € S.

Assume that (2.9) holds for some n > 0. It follows from (2.2) that

(210)  fan(T(z, )| < Zw T, 9)1)) <Z¢ (=)
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for all (z,y) € S x D. From (2.3) and (2.10) we know that

n+1
_Z¢ IJJH < u(m,y)+an(T(aL‘,y))
n+1
<Y (P (llz]))) for all (z,y) € S x D.
=0

This yields that

|ant1(2)| = | sup{u(z,y) + an(T'(z,y))}|
yeD

n+1

Z“ﬁ (|z]))) for all z € S.

That is, (2.9) holds for all n > 0.

Next we prove that {a,}n,>0 is a Cauchy sequence in BB(S). Let
k€ N,e>0and zy € B(0,k) be given. (2.4) ensures that there exists
some m € N such that

n-+p
(2.11) Z W(p'(k)) < e forallm >m and p € N.

i=n

For any n > m and p € N, by (2.1) we know that there exist v1, w; € D

and y1 = T'(zg,v1), 21 = T(xo,w1) satisfying

(2.12) ,
Antp(T0) < H(20,v1,0n4p-1) + 27, an(20) > H(20,v1,0n_1),

an(20) < H(zo,w1,an-1) + 271, @ntp(wo) > H(Zo, w1, Gnyp~1)-

From (2.12) we have
(2.13)
antp(To) — an(2o)|
< max{|H(zo,v1, @ntp—1) — H(T0,v1,0n-1)],
|H (20, w1, antp—1) = H(zo, w1, an-1)]} +27"
max{[an-1(41) = @ntp-1(¥1)]; [an-1(21) = anip-1(21)[} + 27

= |an-1(21) — @np-1(z1)| + 27 ¢,

(I
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where x1 = y; or z; and

lan—1(%1) — antp-1(z1)|

= max{|an—1(y1) — @ntp-1(y1)], [an-1(21) — Gnp-1(21)[}-

Similarly, we conclude that there exist v;,w; € D, y; = T(x;—1,v;),
zi = T(xi—1,w;), T; = y; or z; for 2 < i < n satisfying

|@n+p-1(21) = @n-1(21)] < |antp—2(22) — an—z(22)| + 2%,

|antp-2(22) = @n_2(22)| < |antp-3(23) — an—s(x3)| +2 %,
(2.14)

|ap41(2n-1) — a1(@n-1)| < |ap(zn) — ag(zn)| + 27 .

It follows from ¢ € ®,, (2.2) and Remark 1.1 that
(2.15)
IZall < @(lznall) < @ (lzn—2ll) <--- <@ (loll) < llzoll < &

for any n € N. In the light of (2.9), (2.11), and (2.13)-(2.15), we obtain
that

lan+p(T0) — an(zo)| < Iap(xn) — ao(zn)| + &,
< Iap(mn)l + lag(zn)| + €

< pleall) + Y v (lzall)) +e

=0

(2.16) < (™ (lzol)) + D (e ™ (llzoll)) + €
=0
n+p

< 2Z¢(wi(nkn>)+e

< 3¢

for any n > m and p € N. Thus (2.15) and (2.16) yield that di(an, Gnip)
< 3e. That is, {an}n>0 is a Cauchy sequence in (BB(S),d) and hence
it converges to some w € BB(S). By virtue of (2.8), we get that

d(fw) ’LU) < d(fw> fa'n) + d(a'n+17w> < d(wa an) + d(an+17 'LU) —0
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asn — oo. That is, w = fw is a fixed point of f and hence the functional
equation (1.2) possesses a solution w € BB(S).

We prove that (2.5) holds. For any z9 € S, {yn}nen C D, z, =
T(zp—1,yn), n € N, we have by (2.2)

(2.17)
2]l = 1T (@n—1,yn)ll < @(lZn-1ll) <--- <@ (llzo]l) — 0, as n — oo.
Put k = [||zo||] + 1, where [t] denotes the largest integer not exceeding ¢.

From Remark 1.1 and (2.17) we conclude that {z,}n>0 C B(0,%). Let
k be in N. Note that lim,,— e di(w, am) = 0. For given € > 0, by (2.4)
and (2.17) we know that there exists some m € N such that

m+n

(2.18) {dk W, Q) Z Y(e*(||zo|) } < ¢ for any n > m.

i=n

By virtue of (2.9) and (2.18), we infer that

|w(zn)| < [w(zn) — am(za)| + |am(zn)]

< di(w,am) + 39 (2nl)
-~
< defw,an) + 3 ¥(¢ (o)

i=n

< 2¢

for all n > m. Therefore lim,, o, w(z,) = 0.

Finally we prove that w is a unique solution of the functional equation
(1.2) in BB(S) satisfying (2.5). Suppose that v is also a solution of the
functional equation (1.2) in BB(S) satisfying (2.5). Let g = tg € S
and € > 0 be given. By the definition of w and v, we conclude that there
exist {yn}nZI - D, {Zn}nZI c D> {In}nZI c S and {tn}n21 - S with
T =T(Tn_1,Yn), tn = T(tn-1, 2,) for all n € N, such that

w(z:) <u(@i, Yir1) + w(zipr) + 277 e,
(2.19) v(t:) <u(ts, zip1) + v(tip1) + 277 e,
w(ti) 2ultis zo41) + wltin), v(@s) > w(@s yir1) + 0(Ti1)
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for all i > 0. By (2.19) we easily deduce that

w(zo) < u(zo,y1) +u(z1,92) + - + u(Tn-1,Yn)
Fw(an) + (127",
v(to) < ulto, z1) + u(ts,z2) + -+ + ultn—-1, 2n)
+o(ty) + (1 —27")e,
w(to) > u(to, z1) +ulte, z2) + -+ ultn_1, 2n) + w(tn),
v(w0) = w(zo,y1) + u(z1,¥2) + -+ + u(@n-1,Yn) + v(zn)

(2.20)

for any n € N. Using (2.20) and zg = to, we have
[w(zo) — v(2o)| < |w(zn) —v(zn)| + [w(tn) —v(ta)| + (1 —27")e.

Letting n — oo in the above inequality, we obtain that |w(zg) —v(zg)| <
€, which implies that w(zo) = v(x¢) by letting € — 0. This completes
the proof. O

REMARK 2.1. Theorem 2.4 in [7] is a special case of Theorem 2.1 with
¥(t) = Mt for all t € R, where M is a positive constant. The following
example reveals that Theorem 2.1 generalizes properly Theorem 2.4 in

[7]-

EXAMPLE 2.1. Let X =Y =R, S =D = R". Defineu: SxD — R,
T:SxD— S by

z2(1 — zy)
142y

wsin’(z + y)

u(z,y) = for all (z,y) € S x D.

Choose ¢(t) = 271t and ¢(t) = t2 for all t € RT. It is easy to verify
that the conditions of Theorem 2.1 are satisfied. Hence the functional
equation (1.2) possesses a solution in BB(S). But Theorem 2.4 in [7] is
not applicable since

[u(z,y)| = [u(M +1,0)| = (M + 1)? > M|z|
for any M > 0 with (z,y) = (M +1,0) € § x D.

A proof similar to that of Theorem 2.1 gives the following result and
is thus omitted.
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THEOREM 2.2. Letu:SxD — R, T:Sx D — S be mappings and

(L()(.’E) = ylglg u(ma y), an(m)

(221) = ylgg{u(a:,y) + an—l(T(x’y))}’ ze S, neN.

Suppose that there exist ¢ € o and ¢ € @, satisfying (2.2)-(2.4). Then
the functional equation

(22)  f@= inf{uey) + T} s,

possesses a solution w € BB(S) such that (2.5) holds. Moreover, the
solution w of the functional equation (2.22) is also unique with respect
to (2.5).
THEOREM 2.3. Letu:S8xD — R, T:8x D — S be mappings and
ag(z) = sup u(x,y), an(x)
yeD

= sup max{u(z,y),an-1(T(z,y))}, x €S, n€ N.
yeD

(2.23)

Suppose that there exist p € ®5 and ¢ € ®3 satisfying (2.2) and (2.3).
Then the functional equation

(2.24) f(@) = sup max{u(z,y), f(T(z,y))}, z €5,
yeD

possesses a solution w € BB(S) such that (2.5) holds and

(2.25) w(x) >0 forallz € S.

Moreover, the solution w of the functional equation (2.24) is also unique
with respect to (2.5).

Proof. Set
H(z,y,a) = max{u(z,y),a(T(z,y))} for all (z,y,a) € S x D x BB(S),
fa(z) = sup H(z,y,a) for all (z,a) € S x BB(S).
yeD
As in the proof of Theorem 2.1, we can conclude that f maps BB(S)
into BB(S) and (2.8) holds. Now we claim that for all n > 0,

(2.26) lan(z)] < (||z]]) for all x € S.
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It is easy to verify that (2.3) implies that (2.26) holds for n = 0. Suppose
that (2.26) holds for some n > 0. From (2.2), ¢ € ®3 and Remark 1.1,
we infer that

(2.27)
an (T, )| < V(T y)I)
< 9(p(llz)) < w(lle]) for all (z,y) € S x D.

Using (2.3) and (2.27), we have

—(llzll) < max{u(z,y), an(T(z,y))} < ¢(l|zl) for all (z,y) € 5 x D,

which implies that

|ant1(2)| = Iztelg max{u(z,y), aa(T(2,y))} < ¢(|lzl]) for all € S.

Hence (2.26) holds for all n > 0. On the other hand, (2.23) ensures that

(2.28)  ap(z) <ai(z) < - <an(z) <anti(z) <--- forallz e S.

Next we show that {an}n>0 is a Cauchy sequence in BB(S). Let k € N,
e > 0 and zo € B(0,k) be given. Since ¢ € ®; and ¢ € ®3, it follows
that there exists some m € N such that

(2.29) (™ (k)) < € for all n > m.

For any n > m and p € N, by (2.23) we easily conclude that there exist
y1 € D and zy = T'(xg,y1) satisfying

(2.30) @ntp(mo) < H(20,y1,@ntp—1)+27"€, an(z0) > H(z0,y1,0n-1)-

By virtue of (2.28), (2.30), and Lemma 1.1, we have
(2.31)
0 _<_ an—i—p(xO) - an(:CO)

< H(zo,y1, an+p-1) — H(zo,y1,an-1) + 27le
= max{u(Zo,¥1), @nip—1(z1)} — max{u(zo,y1), an_1(z1)} +27 ¢

< an+p—1($1) - an—l(xl) + 27,
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Similarly, we conclude that there exist y; € D, z; = T(z;-1,¥;) € S,
2 <1 < n satisfying

0 < anyp-1(21) = @n-1(21) < Gnyp-2(T2) — an—2(x2) + 27 %,

0 < nyp-2(22) — an_2(22) < nyp—3(23) — an_s(xs) +27%,
(2.32)

0 < apt1(zn-1) — a1(@n-1) < ap(zn) — ao(zn) + 27 "¢.
It follows from (2.2), (2.3), (2.26), (2.29), (2.31), and (2.32) that

0 < Gntp(®o) — an(z0) < ap(Tn) — ap(zn) +€
< lap(zn)l + |ao(zn)| +€ < 2¢(||an]) +¢
= 2¢(||T(@n-1,yn)ll) + & < 29(p([|Tn-1l)) + &
< 20(¢™ ([|zoll)) + & < 20(0™(k)) +& < 3¢

for any n > m and p € N. This gives that di(an,antp) < 3¢ for
any n > m and p € N. Consequently, {a,}n>0 is a Cauchy sequence
in (BB(S),d) and it converges to some w € BB(S). From (2.8), we
deduce that w = fw. That is, the functional equation (2.24) possesses
a solution w € BB(S).

We prove that (2.5) holds. For any z¢ € S, {yn}nen € D, z, =
T(xn-1,Yn), n € N, (2.2) yields that (2.17) holds. Note that (0) = 0
and 1 is right continuous at 0. Thus (2.17) means that

(2.33) A (||, |]) = 1(0) = 0.

Put k = [||zo]|]] + 1. It is easy to verify that {z,}nco € B(0,k). Let k
be in N and € > 0. Since {a, }nen converges to w, by (2.33) we know
that there exists some m € N such that

(2.34) max{di(w, am), ¥(||z.])} < € for any n > m.

By virtue of (2.26) and (2.34), we have

[w(zn)| < [w(zn) = am ()| + lam(zn)| < di(w, am) + P(([zall) < 2¢

for all n > m. That is, limy,_,e w(zp) = 0.
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Given o € S and {yYn}tnen C D, take z, = T(zn_1,yn) for all
n € N. Since w is a solution of the functional equation (2.24), by (2.5)
we immediately infer that

w(zo) > max{u(zo, y1), w(T(x0,y1))} = w(z1) > -+ > w(zy) — 0

as n — oo. That is, w(zg) > 0 for all zy € S.

Finally we prove that w is a unique solution of the functional equation
(2.24) in BB(S) satisfying (2.5). Suppose that v is also a solution of the
functional equation (2.24) in BB(S) satisfying (2.5). Let zg =t € S
and € > 0 be given. By the definition of w and v, we conclude that there
exist {yn}n21 - D: {zn}nzl C D; {xn}nZI - S and {tn}nZI C S with
Zn, =T(Tn—1,Yn), tn = T(tn_1,2n) for all n € N, such that
(2.35)

w(z;) <max{u(x;, Yis1), w(zie1)} + 27 e,

U(ti) < max{u(ti, Z¢+1), ’l)(ti+1)} + 2_i‘1€,

w(t;) > max{u(t;, zit1), w(tiv1)}, v(z;) > max{u(z;, yir1), v(ziy1)}

for all ¢ > 0. By (2.35) we easily deduce that

(2.36)

'lU(IJ()) < max{u(mo, y1)7 ’lL(ZEl, y2)7 o 7u(mn—1ayn)7 w(w'n)}—'_ (1 - 2—n)€7
’U(t()) < max{u(to, 21), u(th 22)7 T ,U(tn—l, Z’n)a U(tn)} + (1 - 2_n)67
w(to) 2 max{u(to, 21), ult1, 22), -« s ultn—1, 2), w(tn)},

)

'U(.’E() = maX{U(CEO, yl): ’LL(IEl, y2)7 T u(xn—l’ yn)a v(xn)}
for any n € N. Using (2.36), Lemma 1.1 and z¢ = tp, we have
lw(zo) — v(zo)| < |w(zn) — v(@n)| + [w(tn) — v(tn)| + (1 = 27")e.

Letting n — oo in the above inequality, we obtain that |w(zg) —v(zg)| <
e, which implies that w(zg) = v(zo) by letting € — 0. This completes
the proof. O

Following a similar argument as in the proof of Theorem 2.3, we have
the following.
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THEOREM 2.4. Letu:SxD — R, T:58x D — S be mappings and

(2.37)

a0(z) = inf u(z,9), an(x)

= iglf) max{u(z,y), an—1(T(z,y))}, €S, n € N.
y

Suppose that there exist ¢ € ®9 and ¢ € ®3 satisfying (2.2) and (2.3).
Then the functional equation

(238)  fla)= inf max{u(z,y), [(T(2,9))}, = € S,
Yy

possesses a solution w € BB(S) such that (2.5) and (2.25) hold. More-

over, the solution w of the functional equation (2.38) is also unique with

respect to (2.5).

REMARK 2.2. Theorem 2.4 extends, improves and unifies Theorem
3.5 of Bhakta and Choudhury [6], Theorem 3.5 of Liu [12] and a result
of Bullman [2, p.135]. The example below shows that Theorem 2.4 is
indeed a generalization of the results due to Bhakta and Choudhury [6],
Liu [12], and Bullman [2].

ExaMPLE 2.2. Let X,Y,S,D be as in Example 2.1. Define u :
SxD—-R,T:5xD— Shy

_ (1 +zy)

_ z|sin(z + y)|
1+ 22 492

T(z,y) = T2

u(z,y) for all (z,y) € S x D.
Put ¢(t) = 143, ¥(t) = t* for all t € R*. Then the assumptions of
Theorem 2.4 are fulfilled. However, we cannot invoke the results of
Bhakta and Choudhury [6], Liu [12], and Bullman [2] to establish that

the functional equation (2.38) possesses a solution in BB(S) because

3 3 213 2
= — — > = -
w(e,y)l = [u(51 +1), 501+ D)| 2 S [S(M+1)] > Mal
for any M > 0 with (z,y) = (%(1\4-}- 1),3(M + 1)) €S xD.

Let BC(R*) denote the set of all bounded continuous real-valued
functions on R*. Put d(a,b) = sup{|a(z) — b(z)| : z € RT} for all
a,b € BC(RY). It is easily seen that (BC(R™"),d) is a complete metric
space.
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THEOREM 2.5. Let X =Y =R, S=D=R*. Letu,v:8x D —
R* be continuous, u{x,z) be bounded on S, limy_, 4 u(z,y) = +o0,
u(z,-) and v(z,-) be nondecreasing with respect to the second argument
on [z, +o0) for every x € S, and

(2.39) 0 <wv(z,y) <r forall (z,y) € S x D,

where r is a positive constant. Let p,q : S — RT satisfy that p is
continuous, nondecreasing, f0+°° p(s)q(s)ds < +oo and

(2.40) /+00 q(s)ds=1t>0.
0

Assume that

(],0(.'13) = ;giu(l"y)’ S Sa

(2.41) .

ans1(T) = ;gg {U(:E,y) +v($,y)[/ p(s —y)g(s)ds

+ a,(0) /y+<>° q(s)ds + /Oy an(y — s)q(s)ds] }, z € S,n>0.

Ifrt < 1, then the functional equation (1.4) possesses a unique solution
w € BC(R") and

(2.42) d(any1,w) < (r)" (1 - rt) " 1d(ag, a1) for all n > 0.

Proof. For all (z,y,b) € S x D x BC(R"), set

+oo

H(z,,b) = o) + o) [ (s = wa(s)ds

+000) " dsds + [ bty - syateras]

Let

(2.43) fo(z) = inf H(z,y,b) for all (z,b) € S x BC(R™).
Yy
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It is easy to see that f maps BC(R™) into itself. Let ¢ > 0, z € S and
b,c € BC(R™) be given. It follows from (2.43) that there exist y; > «
and y2 > x such that

Fb(@) > H(wy,b) — &, fe(e) > H(z,m,c) —e,

(2.44) fo(z) < H(z,y2,b), fe(z) < H(z,y1,c).

By virtue of (2.39), (2.40), and (2.44), we deduced that

|fb(z) — fe(z)]
< max{|H(a:,yi,b) — H(z,yi,0)| : 1 = 1,2} +e€

+o0

< max {v(a:, ) [|b(0) — ¢(0)] q(s)ds
Yi

+/0%‘ lb(yi—s)—c(yi—S)‘q(s)ds] ;i:m}ﬂ

< max {rd(b, c) [/+00 q(s)ds + /Oyi q(s)ds] =1, 2} +e

Yi
= rtd(b,c) + ¢,

which implies that
d(fb, fc) = sup{|fb(z) — fe(z)| : x € S} < rtd(b,c) + ¢.
Letting € — 0, we easily conclude that
d(fb, fc) < rtd(b,c) for all b,c € BC(RY).

It follows from Banach fixed-point theorem that f has a unique fixed
point w € BC(R™) and (2.42) holds. Obviously, w is a unique solution
of the functional equation (1.4). This completes the proof. |

REMARK 2.3. Theorem 2.5 generalizes Theorem 3.6 of Bhakta and
Choudhury [6] and a result of Bellman [2, p.129].

ProBLEM 2.1. If rt < 1 is replaced by rt = 1 in Theorem 2.5, does
the functional equation (1.4) possess a solution in BC(R*1)?

PrOBLEM 2.2. If the answer to Problem 2.1 is no, then what addi-
tional hypotheses on u, v, p, ¢ are needed to guarantee the existence of a
solution of the functional equation (1.4)7
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