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EXTENDING REPRESENTATIONS
OF H TO G WITH DISCRETE G/H

JiN-HwaN CHO, MIKIYA MASUDA, AND DONG YOUP SUH

ABSTRACT. The article deals with the problem of extending rep-
resentations of a closed normal subgroup H to a topological group
G. We show that the standard technique using group cohomology
to solve the problem in the case of finite groups can be generalized
in the category of topological groups if G/H is discrete.

1. Introduction

Let G be a topological group and H a closed normal subgroup of
G. It is natural to ask whether a linear H-action on a vector space
V extends to a linear G-action on the same space V, in other words,
whether a linear representation of H extends to G. The extendibility
question, in particular when G is finite, plays an important role in so-
called Clifford theory which is concerned with the relationship between
representations and normal subgroups, the basic contribution being due
to A. H. Clifford [7].

In the category of topological groups the question is divided into two
cases according to the topology of G/H, one is the case when G/H is
connected and the other is the case when G/H is discrete. More pre-
cisely, let us denote by Gy the connected component of G containing the
identity element, which is closed and normal in G. Then the subgroup,
say K, generated by Gg and H is a union of the connected components
in G containing elements of H so that it is also closed and normal in G.
Thus we have a series of closed normal subgroups, H <« K <G, such that
K/H = Gy/(Gy N H) is connected and G/K is discrete.
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The first case was studied recently in the category of compact Lie
groups in [6], and a necessary and sufficient condition was found using
topological techniques for every complex irreducible representation of H
to extend to G, in particular, the condition holds if the fundamental
group of G/H is torsion free.

On the other hand, the second case needs purely algebraic techniques,
and the present article is intended to show the standard technique [9,
Chapter 11] using projective representations in the category of finite
groups fits well in the category of topological groups if G/H is discrete.
This generalization may be already known to some specialists because
it is not hard to follow, but there is no exact literature as far as the
authors know. _

The reader may wonder why the authors were led to study this sub-
ject. The motivation comes from the study of fiber module structure
of equivariant complex vector bundles. Suppose that a compact topo-
logical group G acts continuously on a connected Hausdorff topological
space X. The set of elements in G acting trivially on X forms a closed
normal subgroup H, and it is possible to decompose isotypically a com-
plex G-vector bundle over X according to irreducible representations of
H since all fibers of the bundle are isomorphic as representations of H.
Moreover, if an irreducible representation of H extends to G, then its
isotypical part can be represented by tensoring a trivial bundle with a
G/ H-vector bundle over X on which G/H acts effectively. We refer the
reader to [4, Section 2] for more details.

This paper is organized as follows. In Section 2 we generalize the
standard technique using projective representations in the category of
topological groups when G/H is discrete, and show how the extendibil-
ity question is related to the cohomology of G/H. As an application
Section 3 and 4 deal with the extendibility of real and complex repre-
sentations when G/H is isomorphic to a finite subgroup of O(2) which
occurs in studying real and complex G-vector bundles over a circle [4, 5].

2. Projective representations

In this section F will denote a topological field [11, Section 25] such
that the group GL(n, F) of nonsingular nxn matrices over F is a topolog-
ical group under the usual matrix multiplication. By a representation we
mean a continuous homomorphism of a topological group into GL(n, F).

Let G be a topological group and H a closed normal subgroup of G.
We call a representation p: H — GL(n,F) extends to G if there exists a
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representation p: G — GL(n,F) such that p(h) = p(h) for all h € H.

H —— GL(n,F)

G

It is equivalent to saying that there exists a representation p: G —
GL(n,F) such that its restriction to H is isomorphic to p, i.e., there
exists a matrix M € GL(n,F) such that M~ 15(h)M = p(h) for all
heH.

Given a representation p: H — GL(n,F) the map 9p: H — GL(n,F)
defined by the conjugation 9p(h) = p(g~'hg) becomes a representation
of H for each g € G. It follows that the set of representations of H has
a natural left G-action. We say that p is G-invariant if it is isomorphic
to the conjugate representation 9p for all g € G, which is a necessary
condition for p to extend to G.

Let us denote by F* = F \ {0} the multiplicative group of F. A
continuous map p: G — GL(n,F) is called a projective representation

of G if p(g)p(g') = P99’ )e(g,9') for g,¢' € G and a(g,g') € F*. The
continuous function a: G x G — F* is called the associated factor set of

p-
In the following we assume that G/H is discrete, and show that the
technique using projective representations works well in the category of

topological groups. The arguments are mainly adapted from the book |9,
Chapter 11].

STEP 1. Suppose that a representation p: H — GL(n,F) is absolutely
irreducible, i.e., every endomorphism of p is scalar, and G-invariant.
We first show that there exists a projective representation of G which
extends p if G/H is discrete.

LEMMA 2.1. Let H be a closed normal subgroup of a topological
group G such that G/H is discrete. Then G is homeomorphic to G/H x
H.

Proof. Denote by Gy the connected component in G containing the
identity element. Then the inclusion Gy — G induces a continuous
monomorphism from the connected space Go/(Go N H) to the discrete
space G/H. It follows that Go = Go N H and Gy is the same as the
connected component in H containing the identity element. Therefore
H is a union of connected components in G so that G is homeomorphic
to G/H x H. O
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PROPOSITION 2.2. Let H be a closed normal subgroup of a topolog-
ical group G such that G/H is discrete. Suppose that a representation
p: H — GL(n,F) is absolutely irreducible and G-invariant. Then there
exists a projective representation p: G — GL(n,F) such that, for all
he H and g € G,

(1) B(h) = p(h),
(2) p(gh) = p(g)p(h),
(3) p(hg) = p(h)p(9).

Proof. Choose a transversal T for H in G containing the identity
element e of G. Since p is G-invariant, there exists a nonsingular matrix
M; for each t € T such that M, 'p(h)M; = p(h) = p(t~1ht) for all
h € H. Take the identity matrix for M.. Since every element of G
is uniquely of the form th for t € T and h € H we define p(th) =
Mp(h). It is obvious by Lemma 2.1 that 5 is continuous because G/H
is homeomorphic to T' with discrete topology.

Properties (1) and (2) follow immediately from the definition, and
(3) follows from the equation

p(R)p(th) = p(h')Myp(h) = Myp(t™"R't)p(h) = Myp(t~ " h'th)
= p(tt™ h'th) = (K - th),

for t € T and h, k' € H. Applying (1), (2), and (3) it is routine to check
that

(*) pl9) " p(R)p(g) = p(9~ " hg)
for all g € G and h € H. Since p is absolutely irreducible, the equation
pl9g) " p(h)pleg’) = p(g"" (g7 hg)g") = Plg)) ™ p(9™ hy)p(y")
= [p(9)n(g")] ™ p(R)[B(9)n(9")]

implies that 7 is a projective representation of G. O

The group cohomology H"(G/H,F*), where G/H acts trivially on F*
is defined, in terms of the standard (or bar) resolution, by the cochain
complex C™*(G/H,F*) consisting of functions from (G/H)™ to F* and
the coboundary formula given by

(0"u)(g1,-- - gn+1)

= u(g2,- - Gnt1) - (91925 - - -, Gn+1) " - 11(91, 9295, - -+ Int1)

_1\n —1yn+1
g1y Gngna) T (g, ga) YT
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STEP 2. We next show that the associated factor set of the pro-
jective representation p constructed in Proposition 2.2 determines an
element in the group cohomology H?(G/H,F*), which depends only on
the representation p of H.

It is routine to check that a(gh,g’'h’) = alg,q’) for g,¢' € G and
h,h € H. Thus a determines an element a: G/H x G/H — F* in
C?(G/H,F*) defined by a(gH,g'H) = a(g,¢’). Moreover, it is easy to
see that the equation

0(9192,93)04(91,92) = 01(91,9293)a(92,93)

holds for g1, g2, g3 € G so that @ is a cocycle.

Suppose that py is another projective representation of G satisfying
the properties (1), (2), and (3) in Proposition 2.2. Then the equation (*)
implies that 7y(g) = p(g)u(g) for some function p: G — F* such that
p(h) =1 for all h € H. Since

p(h)p(g)ulg) = po(h)Po(g) = Po(hg) = P(hg)u(hg)
for h € H and g € G, the function p is constant on cosets of H. If oy
denotes the associated factor set of py, then

ao(g,9) = alg, §)l9)ulg )ulag) ™" = alg, ¢)* (1) (9. d)

for 9,4 € G. Therefore the corresponding cohomology class of & in
H?*(G/H,F*), denoted by [@], depends only on the representation p.

STEP 3. Finally we show that the extendibility of p is completely
determined by the cohomology class [@].

THEOREM 2.3. Let H be a closed normal subgroup of a topological
group G such that G/H is discrete. Suppose that a representation p of
H is absolutely irreducible and G-invariant. Then p extends to G if and
only if [@] is trivial in H*(G/H,F*).

Proof. The necessity is obvious since any G-extension of p is a pro-
jective representation of G with the trivial factor set.

On the other hand, suppose that [&] is trivial, i.e., @ is a coboundary
in C%(G/H,F*). Then there exists a function v: G/H — F* such that

a(gH,g'H) = v(gH)v(¢ H)v(gg H) ™ = 6'(v)(gH, ¢ H).

Note that the map p: G — F* given by u(g) = v(gH) is continuous
since G/H is discrete. Define a continuous map p: G — GL(n,F) by
p(g9) = p(g)u(g)~t. Then p is a projective representation of G with
the trivial factor set so that it is a continuous homomorphism. Since

p(e) = p(e) is the identity matrix where e is the identity element of G,
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we have u(h) = v(eH) = p(e) = afe,e) =1 for all h € H. Therefore p
is a desired representation of G extending p. (|

It is possible to reduce the extendibility question to Sylow subgroups.
We assume that G/H is finite. Then H?(G/H,F*) admits a primary
decomposition

() H*(G/H,F*) = (D H*(G/H,F*) )
P

where p ranges over the primes dividing the order of G/H and H*(G/H,
F*) () denotes the p-primary component of H*(G/H,F*). If S, is a Sylow
p-subgroup of G/H, then the restriction homomorphism H%(G/H, F*) ()
— H?(Sp,F*) is injective (see [3, Section 10, Chapter III] for example).
Therefore, a cohomology class in H2(G/H,F*) is trivial if so is its reduc-
tion to a Sylow p-subgroup of G/H for all primes p dividing the order
of G/H.

COROLLARY 2.4. Let H be a closed normal subgroup of a topological
group G such that G/H is finite. Suppose that a representation p of H
is absolutely irreducible and G-invariant. Then p extends to G if and
only if it extends to a closed subgroup G, of G for all primes p dividing
the order of G/H, G,/ H being a Sylow p-subgroup of G/H.

3. Extensions in the complex category

We are mainly interested in representations over connected locally
compact topological fields. It is well known that every connected locally
compact topological field is isomorphic either to the field R of real num-
bers or the filed C of complex numbers [11, Theorem 21]. From now on
we shall assume that F is R or C.

Let G be a topological group. It is sometimes convenient to use the
terminology “G-modules” instead of “representations of G”. If G is a
finite group, a representation p: G — GL(n, F) makes a vector space F"
into a left module over the group ring F[G] of G over F. “This module-
theoretic point of view presents technical difficulties in the category of
topological groups because continuity must play a role in the definition of
group ring and module [2, p.66].” However, a vector space F" equipped
with a continuous linear action (or a representation) of G will be called
a G-module.

We first state a well known result providing the structure of the set
of G-extensions. Here we do not assume that G/H is discrete.
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ProposiTION 3.1. Let G be a topological group and H a closed
normal subgroup of G. Suppose that an absolutely irreducible H-module
V extends to a G-module. Then there is a one-to-one correspondence
between the set of G-extensions of V' and the set of G/H-modules of
dimension one.

Proof. Choose a G-extension W of V. For a G-extension W’ of V,
we have a natural map

Hompy (W, W') @ W — W'

sending f ® v to f(v) for f € Homy (W, W’) and v € W, which is in fact
an isomorphism. Here, Hompy (W, W’) has a canonical G-action induced
from those of W and W’, and it is a G-module of dimension one with
trivial H-action. Since we can view Hompg (W, W') as a G/H-module of
dimension one, the one-to-one correspondence follows immediately from
the map sending W’ to Hompg (W, W'). O

REMARK. (1) Note that, given a G-extension W of V, every G-
extension of V has the form of the tensor product of W and a G-module
of dimension one with trivial H-action, which is induced from a G/H-
module of dimension one by the canonical homomorphism G — G/H.

(2) In particular, if G is a compact Lie group, the commutator sub-
group G’ is closed and normal in G [8, Theorem 6.11] so that every
irreducible G/G’-module is one-dimensional. Therefore, there exists a
one-to-one correspondence between the set of G-modules of dimension
one and the set of G/G'-modules.

As an application of Theorem 2.3 we now characterize G-extensions
of complex H-modules when G/H is a finite subgroup of O(2), namely
G/H is a finite cyclic group or a dihedral group.

THEOREM 3.2. Let G be a topological group and H a closed normal
subgroup of G such that G/H is finite cyclic. Then every complex irre-
ducible H-module extends to a G-module if it is G-invariant. Moreover,
the number of mutually non-isomorphic G-extensions agrees with the

order of G/H.

Proof. Since the group cohomology H#(G/H,C*) is trivial when G/H
is finite cyclic (see [1, Corollary 3.5.2] for instance), the proof is imme-
diate by Theorem 2.3 and Proposition 3.1. On the other hand, it is
possible to prove directly without Theorem 2.3 as follows.

Let p be an irreducible representation of H corresponding to the given
H-module. It suffices to find a representation of G whose restriction to
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H is p. Choose an element a of G which induces a generator of G/H.
Since p is G-invariant, there exists a nonsingular matrix M such that

Mp(h)M ™" = %p(h) = p(a”*ha)

for all h € H. Set n = |G/H|. Using the identity above repeatedly, we
have
M"p(h)M ™ = p(a™"ha") = p(a™) " p(h)p(a"),

where the last equality follows from the fact that o™ € H. The identity
above shows that p(a™)M™ commutes with p(h) for all h € H. Since
p is irreducible, it follows from the Schur’s lemma that p(a™)M™ is a
nonzero scalar matrix. Taking a suitable scalar multiple of M, it can be
assumed that the nonzero scalar matrix is the identity matrix. We then
define p(a) to be M~! so that p extends to a representation of G. [

REMARK. It is also known in [6, Corollary 3.4] that every complex
irreducible H-module extends to a G-module when G/H is connected
abelian, in particular, when G/H is isomorphic to the circle group S*.

Note that every Sylow p-subgroup of a dihedral group is finite cyclic if
p # 2. The following result follows from Corollary 2.4 and Theorem 3.2.

COROLLARY 3.3. Let G be a topological group and H a closed normal
subgroup of G such that G/H is dihedral. Then a complex irreducible
H-module which is G-invariant extends to a G-module if and only if
it extends to a P-module for some subgroup of G such that P/H is a
Sylow 2-subgroup of G/H.

EXAMPLE 3.4. Let G be the dihedral group of order 8n (m > 1)
generated by
{a,b] a*™ =b* = (ab)? =1},

and let H be the central subgroup of G generated by a®™ which is an
order two subgroup. Then G/H is isomorphic to the dihedral group of
order 4m. If p: G — GL(1,C) is a one-dimensional representation of
G, then p(a?™) = 1 because b*™ = (ab)®™ = 1 and GL(1,C) is abelian.
Therefore, the nontrivial representation p: H — GL(1,C) defined by
p(a®™) = —1 does not extend to G.

COROLLARY 3.5. Let G be a topological group and H a closed normal
subgroup of G such that G/H is dihedral of order 2n. Let V be a complex
irreducible H-module which is G-invariant.

(1) Ifn is odd, then there are two mutually non-isomorphic G-exten-

sions of V.



Extending representations of H to G with discrete G/H 37

(2) If n is even, then there are either four mutually non-isomorphic
G-extensions of V' or none.

Proof. If n is odd, then all Sylow 2-subgroups of G/H are finite cyclic
of order two. Thus V has a G-extension by Corollary 2.4 and The-
orem 3.2. The number of G-extensions follows from Proposition 3.1,
since the number of complex G/H-modules of dimension one is two if n
is odd and four if n is even. O

4. Extensions in the real category

Let G be a topological group and let U be a real irreducible G-module.
Since U is irreducible, every endomorphism of U is an isomorphism or
the zero map so that the endomorphism algebra of U is isomorphic
either to the real filed R, the complex field C, or the division ring H of
quaternions. Therefore we call U of real, complez, or quaternionic type,
respectively, according to its endomorphism algebra Homg (U, U).

Let H be a closed normal subgroup of G and U a real irreducible H-
module. In this section it is assumed that G/H is discrete and U is G-
invariant. We study how to attack the extendibility question according
to the type of U.

CAsE 1: U is of real type. Since U is absolutely irreducible, Theo-
rem 2.3 is rephrased as follows.

THEOREM 4.1. Let H be a closed normal subgroup of a topological
group G such that G/H is discrete. Suppose that a real irreducible
H-module U is G-invariant and of real type. Then U extends to a
real G-module if and only if the corresponding cohomology class in
H?(G/H,R*) is trivial. Moreover, every G-extension of U is of real

type.

The last statement in Theorem 4.1 is obvious since Homg(ﬁ,ﬁ) -
Hompy(U,U) = R if U extends to a real G-module U.

CaAse 2: U is of complex type. In this case, the endomorphism
algebra Hompy (U, U) = C acts on U so that we may view U as a complex
irreducible H-module, say V. Then U@ C=2V @V and V 2 V. Since
U is G-invariant, so is U @ C. It follows that the conjugate H-module
9V is isomorphic to either V or V.
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LEMMA 4.2. Suppose that U extends to a real G-module. Then the R-
linear action of g € G on V is either C-linear or conjugate C-linear, and
it is C-linear (resp. conjugate C-linear) if and only if 9V = V (resp. 9V =
7).

Proof. The action of g € G on Hompg(U,U) given by conjugation
o — gog~! for 0 € Hompy(U,U) is an R-algebra automorphism, and
since Hompg (U, U) is isomorphic to C as R-algebra, the action of ¢ on
Hompy(U,U) is either the identity or the complex conjugation when
Hompg (U,U) is identified with C. Accordingly the action of g on V
is either C-linear or conjugate C-linear.

If the g-action on V is C-linear, then the map 9V — V sending
v = gv is a C-linear H-isomorphism. Conversely, if there is a C-linear
H-isomorphism ¢: V — 9V, then the composition go: V — V sending
v — gp(v) is an R-linear H-isomorphism so that g¢ € Hompy (U, U).
For each 0 € Hompy(U,U), we have o(gp) = (gp)o = (go)p since
the algebra Hompy (U,U) is commutative and ¢ is C-linear. Therefore
og = go for all ¢ € Hompy (U, U), which means that the action of g on
V is C-linear. |

The set
Gy ={geG|IVxV}
is independent of the choice of V' and depends only on U. Clearly Gy
contains H and forms a subgroup of G of index at most two.

COROLLARY 4.3. (1) If Gy = G, then every G-exiension of U is of
complex type.
(2) If Gy # G, then every G-extension of U is of real type.

When U is of complex type, there is a generalized version of The-
orem 2.3 developed by I. M. Issacs [10, Corollary 4.4], and it is not
difficult to apply the result for topological groups. In the following we
shortly state the result.

We identify V' with C", and define

o Jv ity
v i= —
T it VeV

for v € C" =V, where 7 denotes the complex conjugate of v. Similarly

we define
IM = % if gvgz
M if vV
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for M € GL(n,C). A continuous map p: G — GL(n,C) is called a
crossed representation of G if p(gg’) = p(g)?p(g’) for ¢g,¢' € G.

LEMMA 4.4. Let p be a complex representation of H corresponding
to V. Then U extends to a real G-module if and only if p extends to a
crossed representation p.

Proof. For the sufficiency it suffices to show that the C-linear H-
action on V extends to an R-linear G-action. Note that 9(Mv) = IM9%
for v € V and M € GL(n,C). Then V has a G-action defined by
g-v=p(g) for g € G and v € V since

9(g'v) = g(5(g")7v) = B(9)*(B(¢')?v)

(%) / /
= p(9)*Plg)* v = plgg")* v = (99')v

for g,¢’ € G. It is obviously R-linear, continuous, and extends the H-
action on V since h-v = p(h) = p(h)v for all h € H.

On the other hand, suppose that U extends to a real G-module, i.e.,
the C-linear H-action on V extends to an R-linear G-action. Since the
action of g € G on V is either C-linear or conjugate C-linear according
as 9V = V or V by Lemma 4.2, the map sendingv € Vtog-%w eV
is C-linear; so we have a complex matrix p(g) € GL(n,C) such that
g -9 = p(g)v, equivalently g- v = p(g)% because 9(%) = v. The map
p: G — GL(n,C) is continuous since the two G-actions, g - v and %, on
V are continuous. It is obvious that p(h) = p(h) for all h € H. The
equation (***) above shows that p(gg’) = p(g)9p(g’). O

Similarly, a continuous map p: G — GL(n,C) is called a projective
crossed representation of G if p(g)%6(¢") = p(g99’)a(g,d’) for g,¢' € G
and «(g,g’) € C*. Then Proposition 2.2 is generalized as follows.

PROPOSITION 4.5. Let H be a closed normal subgroup of a topolog-
ical group G such that G/H is discrete. Let p be a complex represen-
tation of H corresponding to a real irreducible H-module which is of
complex type and G-invariant. Then there exists a projective crossed
representation p such that (1) p(h) = p(h), (2) p(gh) = p(9)%p(h), and
(3) p(hg) =p(h)p(g) for all h € H and g € G.

Let us denote by C the non-zero complex numbers C* with the G-
action defined by

. z if WV,
Z = _—
z if VT
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for z € C. The factor set a: G x G — C* is constant on cosets of H and
satisfies the equation

a(g192, 93)a(g1, 92) = a(g1, 9293)7 (g2, g3)

for ¢1,92,93 € G. So the induced map @: G/H x G/H — C* is a
cocycle in C*(G/H,T"), and the corresponding cohomology class [a] €
H?*(G/H,C") depends only on p. Finally Theorem 2.3 is generalized as
follows.

PRrROPOSITION 4.6. Let H be a closed normal subgroup of a topolog-
ical group G such that G/H is discrete. Suppose that a real irreducible
H-module U is G-invariant and of complex type. Then a complex rep-
resentation of H corresponding to U extends to a crossed representation
of G if and only if [@) is trivial in H*(G/H,T").

Combining Proposition 4.6 with Lemma 4.4, we have the following
result.

THEOREM 4.7. Let H be a closed normal subgroup of a topological
group G such that G/H is discrete. Suppose that a real irreducible
H-module U is G-invariant and of complex type. Then U extends to
a real G-module if and only if the corresponding cohomology class in
H*(G/H,T") is trivial.

CAsE 3: U is of quaternionic type. Similarly, C C H = Homyg (U, U)
acts on U so that we may view U as a complex irreducible H-module,
say V. Then U® C =2V @V and V= V. Since U and thus U @ C are
G-invariant, V is also G-invariant. Therefore, V' determines an element
in the group cohomology H?(G/H,C*), and V (resp. U) extends to a
complex (resp. real) G-module if the element is trivial by Theorem 2.3.

THEOREM 4.8. Let H be a closed normal subgroup of a topological
group G such that G/H is discrete. Suppose that a real irreducible H-
module U is G-invariant and of quaternionic type. Then U extends to
a real G-module if the corresponding cohomology class in H?(G/H,C*)
is trivial.

However, the converse is no longer true as the following example

shows.

EXAMPLE 4.9. Denote by Qg the quatermon group of order 8 gener-
ated by z and y under the COI’ldlthHS zt=1,2% =y? and zyz = y. The
subgroup K generated by z? is of order two and Qs/K = Z/2 x Z/2.



Extending representations of H to G with discrete G/H 41

Let p1: Qg — GL(2,C) be the standard representation given by

wi/2 0 0 -1
n@ =" ] m aw=]

and let py: K — GL(1,C) be the nontrivial representation given by
p2(z%) = —1. Note that py does not extend to Qg because zyz = y and
GL(1,C) is abelian. Let us denote by p¥: Qs — GL(4,R) the realifica-
tion of p1, and by p1§: K — GL(1,R) the nontrivial representation given
by pX(z%) = —1. Note that p¥ is of quaternionic type and p¥ is of real
type.

Let G = Qs x Qg and H = Qg x K. We claim that pf ®g p]§ extends to
G but the corresponding cohomology class in H2(G/H,C*) is not trivial.
Note that p} ®g pR is the realification of the complex representation
p1 ®c p2 which does not extend to G since py does not extend to Q.
Thus the cohomology class in H?(G/H,C*) corresponding to p; ®c po
(and so p} @g p%) is not trivial. Since there is a conjugate C-linear
Qs-endomorphism J of p; such that 72 = — id, we have a conjugate C-
linear G-endomorphism J ¢ J of p1 ®c p1 such that (J @c J )2 = id,
in other words, p; ®c p1 has a G-invariant real structure. Therefore,
the realification of p; ®¢ p; is reducible and its irreducible component
is a G-extension of p]{Q R p§, since the restriction of p1 ®¢ p1 to H is
isomorphic to (p1 ®c p2) ® (p1 B¢ p2)-

We now apply the results developed in this section to the case when
G/H is a finite subgroup of O(2).

LEMMA 4.10. Let G be a topological group and H a closed normal
subgroup of G such that G/H is finite cyclic of odd order. Then a real
irreducible H-module extends to a real G-module if it is G-invariant.

Proof. Note that both H?(G/H,R*) and H%(G/H,C*) are trivial [1,
Corollary 3.5.2]. Moreover, C' = C* since G/H has no index two sub-

group. Therefore the lemma follows immediately from Theorems 4.1,
4.7, and 4.8. O

LEMMA 4.11. Let G be a topological group and H a closed normal
subgroup of G such that G/H is dihedral of order 2n for odd n. A real
irreducible H-module U which is G-invariant extends to a real G-module
if it extends to a real P-module for some closed subgroup P of G which
contains H as an index two subgroup.

Proof. Note that every Sylow p-subgroup of G/H is finite cyclic of
odd order unless p = 2, and that P/H is a Sylow 2-subgroup of G/H. If
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U is of real or complex type, then the result follows from Corollary 2.4
or its generalized version using H?(G/H,T '), respectively. Since ev-
ery Sylow p-subgroup of G/H is finite cyclic, the p-primary component
H?(G/H,C*)(, is trivial for all prime p so that H*(G/H,C*) is triv-
ial by the primary decomposition (**) in Section 2. Therefore, if U
is of quaternionic type, then U always extends to a real G-module by
Theorem 4.8. O

THEOREM 4.12. Let G be a topological group and H a closed normal
subgroup G such that G/H is finite cyclic or dihedral. Then a real
irreducible H-module U which is G-invariant extends to a real G-module
if and only if it extends to a real P-module for some closed subgroup of
G such that P/H is a Sylow 2-subgroup of G/H.

Proof. Suppose that G/H is finite cyclic of order n = 2™k for odd k.
Choose an element a € G such that a™ € H. Then G is generated by H
and a, and P is generated by H and a*. Note that G'/P is finite cyclic
of odd order k. Since a~'a*a = aF, any P-extension of U is G-invariant
so that it extends to G by Lemma 4.10.

Suppose that G/H is dihedral of order 2n = 2™k for odd k. Choose
elements a,b € G such that G is generated by a,b, and H under the
conditions a”,b?, and (ab)*> € H. We may assume that P is generated
by a*,b, and H. Then the index two subgroup K of P generated by a*
and H is normal in G, and G/ K is dihedral of order 2k. Since k is odd, it
suffices to show that U extends to a real K-module which is G-invariant
by Lemma 4.11. By assumption U extends to a real P-module, say U.
Then the restriction of U to K is a desired K-extension of U which is

G-invariant, since it is P-invariant and a~la*a = aF. O
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