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ON A VORTICITY MINIMIZATION PROBLEM FOR
THE STATIONARY 2D STOKES EQUATIONS

HoNgcHUL KiM AND OH-KEUN KWON

ABSTRACT. This paper is concerned with a boundary control prob-
lem for the vorticity minimization, in which the flow is governed by
the stationary two dimensional Stokes equations. We wish to find
a mathematical formulation and a relevant process for an appropri-
ate control along the part of the boundary to minimize the vorticity
due to the flow. After showing the existence and uniqueness of an
optimal solution, we derive the optimality conditions. The differ-
entiability of the state solution in regard to the control parameter
shall be conjunct with the necessary conditions for the optimal so-
lution. For the minimizer, an algorithm based on the conjugate
gradient method shall be proposed.

1. Introduction

In this paper, we are concerned with a vorticity minimization problem
for a flow which is governed by the two dimensional stationary Stokes
equations. Let us describe the boundary control problem for the Stokes
equations that models the minimization of the vorticity in a fluid flow.
Let © be a bounded domain in IR? with C? boundary. For practical
purposes, we assume that the boundary 92 = I' is composed of two
disjoint parts with positive measures; the homogeneous part Ty and
the control part I'; such that I' = I'g UT'.. We are concerned with the
following Stokesian flow in 2 with the control effected over the boundary
T.:

(1.1) —VvAG+Vp=f in Q,
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and
(1.2) V-i=0 inQ
along with the Dirichlet boundary condition
g on I,
(1.3) i=4{ _ ‘
0 on I'y.

Here, we denote the gradient operator by V and the Laplacian operator
by A = V2. The vector field % represents the velocity of the flow,
p the pressure and v > 0 the inverse of the dimensionless Reynolds
number. In the Newtonian fluid based on the constitutive laws, this
Stokes system appears when the flow is stationary and the Reynolds
number is relatively small so that the nonlinear convective term (- V)i
in the whole Navier-Stokes system is too small to be neglected.

We describe the control parameter by the boundary velocity g along
the part I', of the boundary. For the compatibility and regularity for
the solutions of the equations (1.1)-(1.3), the control parameter § should
satisfy

(1.4) support of g C I'., and / g-nds=20,

where 71 is the unit normal vector along I'..
The modeling boundary control problem for the vorticity minimiza-
tion is formulated as follows:

Find the optimal boundary control g along I’ minimizing
the cost functional

1
15  (P): J(@.F) = -/ IV x @ dz + 9/ G2 ds
2 Ja 2 Jr,
where i is subject to the two dimensional Stokes system
(1.1)-(1.4).

Here, V x @ denotes the curl operator in R2. In the expression for

J (i, §), the first term / |V x )% dz measures the vorticity stemmed
Q

from the fluid flow, and the second term / || ds defines the control

|
factor along the boundary I'.. It is often demanded for a concession of
mathematical rigor for the control. The positive penalty parameter a
in (1.5) may be used to switch the relative importance between terms
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in (1.5). It is also necessary to keep the uniform boundedness for the
control terms.

The vorticity introduced by the fluid flow is an important factor dealt
with the fluid dynamics and mechanics. It is recognized as the force gen-
erating the turbulence. It has been regarded as a major source of the
disturbance in the fluid flow, and is closely connected with a variety of
technical applications in science and engineering such as aerodynamics
and the crystal growth process. In [1], Abergel et. al. discussed some tur-
bulence control problems thorough the distributed control. However, the
boundary control for the turbulence minimization raises some significant
difficulties in connection with the rigorous mathematical formulation for
the control as we shall indicate at the forwarding section. The purpose of
this paper is to investigate the mathematical structure for the boundary
control dealing with the minimization of the vorticity, which generates
the rotational force due to the fluid flow. For this purpose, we begin
with a relatively simple dynamical situations. We assume the fluid flow
is governed by the two dimensional stationary Stokes equations under
the divergence free condition. The divergence free condition stands for
the incompressibility of the fluid volume under the constitutive laws. Us-
ing the divergence free condition, one may transfer the Stokes problem
(1.1)-(1.5) into the stream function formulation, or the stream function-
vorticity formulation. In this paper, we examine the velocity-pressure
formulation linked with an orthogonal projector.

The plan of the study is as follows. In the remainder of this section,
we will introduce some notations and preliminary results that will be
useful in what follows. In section 2, we will discuss the existence of
an optimal solution and examine the first order necessary conditions
for the minimizer. In section 3, we organize the optimality system for
the control problem, and for a minimizer, an algorithm based upon the
conjugate gradient method shall be provided.

1.1. Notations and preliminaries

Throughout this paper, we will denote the generic constants by C
whose values depend on the context. Let @ be a bounded domain in
R? with C? boundary. Let us denote by H*(O), s € R, the standard
Sobolev space of order s, with respect to the set O, which is either the
flow domain §2, or its boundary I, or part of its boundary. We denote
the inner product on H*(O) by (-,-)s and its norm by || - ||s = /(-, *)s-
Especially, when s = 0, H°(Q) = L%(©), and || - ||o represents L?-norm.
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Also, it will be convenient to have a compact notation for partial

0 .
derivatives. We shall write 0; for Fr and for higher-order derivatives
~

we use multi-index notation. When p = (u1, p2) is a multi-index, we set

2 8 \M [/ § \ M
- . : TR -
|| Z pj  with 0O <8w1> <6x;g) .

J=1

Whenever m is a nonnegative integer, the inner product over H™(O) is
defined by

@, V)m =Y (0"¢,0"),
[u|<m
and its norm by
ol = > [ 10"¢() da,
IMISm/O

where g = (u1, p2) is a multi-index.

For spaces of vector-valued functions, we will use boldface notation.
For example, H™(Q) = [H™(Q)]? denotes the space of R2-valued func-
tions such that each component of an element in H*(£2) belongs to
H?*(Q). Of particular interest for our purpose is the space

Hl(Q) = {’l_f= (1)1 ,’1)2) € LQ(Q)|6ij~ € LQ(Q), 1<4,73< 2},
which is equipped with the norm
1713 = llowllF + a3 -

Whenever I’y € T' has a positive measure, the space with the homo-
geneous boundary condition imposed along I'g is defined by H%,O(Q) =
{t e H(Q)|7=0 onTg}, and we let HL(Q) = H}(Q). For details
about these spaces, see, e.g., [2], [6], [8], and [12].

Of special use, we define the space of infinitely differentiable functions
with the divergence free condition by

V) ={7eC®Q)|V - =0inQ, #=0onTy},
and its completion on L?(2) and H({2) by
H={7eLl?*Q)|V-7=0inQ, #=0onTp}

and
V={7eH(Q)|V-7=0inQ},
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respectively. Also, we will define the closed subspace of H and V, where
the homogeneous condition is imposed on the whole boundary, by

Hy={7eLl?(Q)|V-7=0inQ,and 5=00nT}

and
Vo={0cH}Q)|V-7=0inQ}.

On the space H the norm and the inner product are denoted by
|Ullo and (@,¥) respectively. We also denote the seminorm on V by
|F|| = [IV¥]lo. According to Poincare’s inequality ([6]), this is equivalent
to the norm of H(Q2). Here, the norm on H!(Q) is given by

. . . 1/2
I3l = (I3 + 1a17)

Let us denote the dual space of V by V* and the duality between
V*and V by < -,- >vy«. Since V is densely imbedded in H and H may
be identified with its dual H* by Riesz’s theorem (cf. [10]), the spaces
constitutes the canonical Gelfand’s framework for the weak variational
formulation in the sense of

VCcHCV?,

where the inclusions implicitly define dense embeddings. Especially the
space V is compactly imbedded in H.

For the concerned boundary I';, H5(I'.) denotes the space of functions
in H*(I';) with compact support in I'.. We shall denote the dual space
of H{(T;) by H™*(I';) and the duality between H™*(I';) and H§(I';)
by < -,- >_sr.. Restricting the domain of integration, we represent
the norm || - ||s,r, for H*(T;). We also define the traces to the control
part I'; by 72 : H%‘O(Q) — H1/2(I‘C) (U 61“ ), and 'ycl : H%C(Q) —

c

—

ov

H1/2(To) 5 (70 o
( 0)’ v 8ﬁ FC

In view of (1.4), we take the space for the control parameter as

/ g’-ﬁds:O}.
Te

It is clear that W is a closed subspace of HY/2(T',).

The following lemma, which is called the Lax-Milgram lemma, plays
an essential role not only in the formulations but also in the exposition
of the well-posedness associated with the elliptic systems, whenever the
data are appropriately good.

) , Tespectively.

W = {ge HY?(T,)
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LEMMA 1.1 Let X be a real separable Hilbert space equipped with
the norm || - ||x. Let a(-,-) : X X X — R be a bilinear form satisfying
la(z,y)| < allzlixllyllx Yz, y€ X, (X-continuity)

and
a(z,z) > colzl|% VrzeX, (X-coercivity),

where c¢1 and co are positive constants independent of x, y € X. Then,
for each f € X*, there exists a unique solution x € X satisfying

a(z,y) =< f,y>, VyeX
and .
lallx < =1 fllx-
2

For the proof, one may consult with [6], [8], and [11].

Finally, we need to refer to the two dimensional curl operators. Let
D’() denote the space of distributions in £2. In the sense of distribu-
tions, two kinds of curl operators are introduced:

V x ¢ = (B, ~016) for ¢ € D'()
and
V X T=08wy —Bovy  for 7 = (v1,13) € (D'(Q))%.
One can easily check the following identities hold :
(1.6) V x (VX ¢)=—-Ad
and
VX (VX¥)=-Av+V(V- 7).

Hence, it is immediately followed that
(1.7) Vx(Vx7)=-A%, VieV.

REMARK 1.1. In the three dimensional case, there is no corre-
sponding curl operator acting on the scalar function as in (1.6). When

¥ = (v1,v9,v3) is a differentiable vector field in R 3, the curl operator is
defined by

6 X U= (82’03 — 83’()2, 83'1)1 - 811)3, 811)2 — 821)1) .
Then, as in (1.7), it also holds that
Vx(Vx®) =—-A7 VieV.
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2. Existence results and the optimality system

In this section, we will show the existence of an optimal solution for
the control problem (P) and establish the first order necessary conditions
for an optimal solution by using the differentiability of the state solution.

2.1. Existence of an optimal solution

A variational form for the Stokes equations (1.1)-(1.3) can be intro-
duced by the bilinear form a(-,-) : V x V — R, which is defined by

a(t, ) =z// Vi -Vidz.
Q

Obviously, a(-,-) is coercive over V, and according to the Poincare’s
inequality it also follows for some positive constants C; and Cy

la(@,¥) < Cilldl1llvh < Collalll|o]l Vi, TeV.

Hence the bilinear form a(-,-) is continuous over V.
By the Green’s first identity, we have for every o € Vo = VN H((),

a(i,v) =1//V12’-V17dw
Q
=u/ (V-(U-Vﬁ)—Aﬂ~6>dw
Q

1// U'%,ds—y/ﬁ-Aﬁdm
an On Q

= y/ﬁ-(—Aﬁ)dm.
Q

Thus, the Stokes equations (1.1)-(1.3) can be written by the following
variational form:

Seek @ € V satisfying

(s) vsel,,

2.1) (s) =
) Vsely.

In the following, we demonstrate the well-posedness for the system
(2.1) as well as the regularity result.
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PROPOSITION 2.1. Let § be a bounded domain in R2 with C?-
boundary. Let f € H™1(Q) and § € W. Then, the system (2.1) has a
unique solution 1 € V, and the system is well posed in a sense

(2.2) @l < QN1+ gl r.)

where the constant C is independent of f and g.
Furthermore, if f € L2(Q) and § € W N HY2(Q), @ belongs to
V NH?(Q), and we have

(2.3) Iz < CUIFllo + |Fl3/2r.) -

Proof. Since § € W, there exists %y € V such that 12(iy) = 7 by
Ladyzhenskaya [9] (see also [8], [12]), and @ — 1y belongs to V. Hence,
substituting in (2.1) by 7= — ty, we have

(2.4) (i, @ — o) =< [, @ — o> .

Since the bilinear form a(-,-) is continuous and coercive over the space
V, (2.4) has a unique solution by Lemma 1.1.
According to the Poincare’s inequality applied to

a(i@ — o, @ — o) =< f, i — o > +alio, @ — i),
one can get for some positive constant C
Iz — a@ol® < C1(|| fll-1)1@ — Goll + ol @ — a@oll) ,
so that
@ — doll < Cr(l[fll-1 + lloll) -
Hence, from the triangle inequality we have
@]l < [|@ — dol + ll@oll < CIIfll-1 + lldo])

for constant C' > 0. If we take infimum over all iy € V such that
72(#) = §, then the following is derived from the above inequality

Izl < CUIA-2 + gl /2r.) -
The regularity result stated in (2.3) is standard in elliptic systems. [J
In the next proposition, we show the existence of an optimal solution.

PROPOSITION 2.2. Given f € H™(R), there exists a unique minimal
solution (4, §) for the problem (P) such that @ is the solution of (1.1)-
(1.3) with 79(@) = §.
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Proof. Let
U ={(u,9) € Vx W |u is a solution of the system
(1.1)-(1.3) such that v(w) =g} .

Let g be an element of W. Then, by Proposition 2.1, there exists a
unique % € V such that @ satisfies the system (1.1)-(1.3) with 42(a) = g.
Hence U is not empty. Let {(@,,gn)} C U be a minimizing sequence,
which is bounded below. Since @, is uniformly bounded, 4, is also
uniformly bounded by (2.2). So, one can extract a subsequence (denoted
again by the same notation) which converges weakly to (4, §). Using the
compact embedding of V in H and the continuity of the trace mapping,
one can deduce

n -~ g in W,

in

£

Uy, - v,

(2‘5) 0/~ Q= .
fYc (u’n) - ’YC (’LL) n W )
H,

iy - U in
where — denotes the weak convergence.
Concerned with the vorticity term in the cost functional, especially
we have

/(vXﬁn).qbdx—/ﬁn.(ﬁx@dm:/ (i, F)pds Vé e H(Q).
Q Q

e
This can be derived by taking integration by parts. Hence, for every
7€ VNH?(Q), relations (2.5) allow us to pass to the limit with the aid
of (1.7) that

/Vxﬁn'fo)’dw:/ﬂfn-ﬁx(Vxﬁ)dxﬁ—/ (tin - T)(V X ¥) ds
Q Q

Te

:/an.(~m7)dm+/ (Un - T)(V X U)ds

T

__,/Qg.(_my)dm-;—/ (@-7)(V x v)ds

c

:/Vxﬂ'-Vxﬁdm,
Q

which yields
VX, =~ Vx4 inH.
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We also note that the Young’s inequality produces
/ |V X ’L_l,'l2 dxr = / (01'U2 - 62u1)2 dx < CH’IIHQ .
0 Q

This implies that the cost functional J is strongly continuous, and hence
J is lower-semicontinuous. Thus, if we pass the sequence to the limit in
U, it follows
J(U, §) < liminf J (i, gn) -
n—oo
Therefore, the functional J is minimized at (@, §). It is a direct applica-

tion of (2.5) to show that (i, ) belongs to Y. Thus, (i, ) is an optimal
solution. Furthermore, since J is convex, the solution is unique. O

2.2. The first order necessary conditions

In this section, we discuss the question of what relations characterizes
an optimal solution. We proceed to derive the first order optimality
conditions associated with the problem.

To begin with, it will be convenient to introduce an orthogonal pro-
jector P, which is called a Leray projector. We note that L2(£2) can be
decomposed by

(2.6) L2(2) = Hy © HE ,
where
Hy = {7 € L%(Q) |7 = V¢ for some ¢ € H'(Q) }.
If 4 € Hy, from/ u-Vodr = / ¢>ﬁ'-ﬁds——/ (V-i)¢dz, it follows that
Q r Q

i -Védz =0 for every ¢ € H(Q). On the other hand, if 7@ € L?(Q2)
Q

satisfies @ = 0 on I and / @-Vodr =0 for all ¢ € HY(Q), then by the

Q

Green’s formula we have V - & = 0 in (2, so that @ € Hy. This justifies
the orthogonal decomposition of L2().

Let us define the orthogonal projector P : L%(Q) — Hyg. Then, with
A = P(—A), the variational form (2.1) for the Stokes equations can be
equivalently written by

VAT = Pf in Q,

(2.7) i(s) = g(s) Vsel,,

ﬁ(s) = 0 Vsely.
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By Proposition 2.1, the solution @ for the system (2.7) can be regarded
as a function of the control parameter §. Also, by Proposition 2.2, it
is justified to reformulate the cost J(-,-) into the functional of a single
parameter g as

J(g) = J(u(3),§) for e W.

In order to deduce the necessary conditions for the optimality, we
need to examine the first order variation of the functional .7 with respect
to the control parameter. The rate of the variation J at § can be
measured as a directional semi-derivative

dJ(G;h) = %j(§+ th) ., for heW.
This derivation for J is said to be Gateaux derivative at g if

o dJ(F;h) exists for every k,
o h— dJ(g;h) is linear and continuous.

Before going ahead, we need to show that the solution of the Stokes
equations (2.7) is strictly differentiable.

_ LEMMA 2.3 Let Q C R? be a bounded domain of the class C%. Let
f € L2(Q) be given. Then, the mapping

i: W — V; <§H6(5)>

is differentiable. Furthermore, if we represent the Gateaux derivative of

@ at § by @' with 4@'(h) = diu(g;h) in every direction, then for every
h € W, @' € V is the solution of the system

-

vAi' = 0 in Q,
(2.8)

el

@ = h on I'..

Proof. Since the systems (2.7) and (2.8) are linear, it is obvious that
(g + th) — @) — ta'(B)]| =0,
and this completes the proof. O

The derivation of the Gateaux derivative for the functional J essen-
tially depends on the following.

LEMMA 2.4 We assume the conditions of Lemma 2.3. If @' is a
solution of the system (2.8), then for every € € L%(Q), we have

. 0w -
2.9 g -d'(h)dx = —v——=-hd
(2.9) /Q a@'(R) de /F vos s,
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where w € V is the solution of the adjoint equations

vAw = P in ),
(2.10)

w = 0 on.

Proof. For a preliminary arrangement, we provide a noticeable fact.
Since the traces 72(@') = h and 72(@) = 0, the Green’s second identity
yields that

<Aw, @' > - < Ad',w >
= <73(ﬁ,) ch( )>Fc - <’YC( ) ’Yc(u )>F
= - <7c( ) h>F

According to the above respects, we obtain

/é’ a’( dx—/P_' i’ (
:/yAw-qz'dx
0

:/yAa-a’dx—/uAﬁ’-wdx :
Q Q

=v<Aw, i@’ > -v< Ad', 0w >
b

:—V<70( )h>Fc

ow -
—/I;C—I/—az'hds.

In this estimation, we used the facts that A%’ = 0 in Q and @’ = 0 on
Ty O

We are now ready to estimate the first order Gateaux derivative.

PROPOSITION 2.5 Let Q be a bounded domain of the class C? in
R2. For the body force f € L2(Q), let (4, §) be an optimal solution for
the boundary control problem (P) with @ = (g). Then, the Gateaux
derivative for the functional J at ¢ in the h-direction is given by

-

2.11)  dJ(§:k) =< (— vy H(@) + A2V X @) 7 + aﬁ), h>r,
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where W is the solution of the adjoint system

vAT = Ai@ in Q,
(2.12)

-

@ = 0 on I'.

In this expression, 7 denotes the unit tangent vector along I'..
Proof. In R?, we have the following relation between the unit normal
vector 77 = (n1,ng) and the unit tangent vector 7= (71, 72):

n= (nl,ng) = (7'2, —7‘1) .

Hence, if ¢ € HY(Q) and @' = @'(h) is the solution of the system (2.8),
the Green’s formula yields

/¢Vx m—/vX¢”m+/w)%m.

It is also noteworthy that the analogous result for the curl operator
can be generalized into tangential vector fields on the boundary of a
Lipschitz domain in R.3([3]).

If we now evaluate the Gateaux derivative at ¢ in the ﬁ-direction,
from the above considerations it follows that

Te

+af g-hds
T

= [ ~ad- @ gt [ (7507 Rdsva [ 7has.
Q

The relation (1.7) for the curl operator in R? has been used. If we
replace € by — A# in (2.9), by Lemma 2.4 the term / — A - ﬁ'(i_i) dz
Q

can be written in the form
ow -
2.14 — AU d = —v—-hd
( ) / u- Zr = /c Va’l’L S,

where @ is the solution of the system (2.12). Therefore, from (2.13)-
(2.14) the Gateaux derivative for the functional J can be expressed in
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the simplified form of the force effected aiong the control boundary I'.
as

dJ(g; h) z/Q—Aﬁ-ﬁ'(ﬁ)d:n+/ (V x @) 7 hds

[

(2.15) +a / 7-hds
Ie

ow e\
—/Fc<—y%+(V><u)T+ag)-hds.

This completes the proof, for (2.11) corresponds to the variational for-
mulation of (2.15). O

REMARK 2.1. In R3, we encounter some difficulties in evaluating
the Gateaux derivative of the functional involving the vorticity term.
Naively computing the variation of J at § in the direction of k as in
(2.16), it is followed

dJ (G, k) = 6xﬁ-ﬁxﬁ'(ﬁ)d:¢+a/ G-hds
Q c

= | Vx(Vxa)-@'(h)dz+ | V xii-id'(k)xids
Q T.

+a/ g’-l_ids.

In the above estimation, we have no other way to detach the h from
/ V x @- @'(k) x fids as the two dimensional case. Hence, we meet
Te

some difficulty when dealt with the boundary control problem for the
vorticity minimization. In this case, one may examine the stream func-
tion formulation or stream function-vorticity formulation in accordance
with the divergence free condition. This will be studied elsewhere.

In the differential framework, the variational form for the Gateaux
derivative can be interpreted to be the gradient of J under the duality
structure between the control space W and its dual space W *:

dJ(G;h) = <VI@G),h >w+

= < (= vR(@) +UV x D)7+ aF), i >we .
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Hence, the gradient of J can be written by

(2.16) Vj(g’)z—u—g%—}—(Vxﬁ)F-i—ag'.

This is the key factor for the first order necessary conditions to find
an optimal solution for our boundary control problem to minimize the
vorticity due to the flow. The candidate for the minimizer necessarily
comes from the critical points of the functional 7, so that (2.16) provides
the conditions for the optimal solution. That is, an appropriate choice
for the control parameter will be the one turning the gradient to be
vanished.

3. Algorithm based on the conjugate gradient method

Let us summarize the results discussed so far. In order to solve the
boundary control problem for the vorticity minimization under the two
dimensional Stokes system, we have to solve the two dimensional Stokes
system

vAi = Pf inQ,
V-4 = 0 in §,
(3.1)
4 = g on I,
Z = 0 only,

the adjoint system
vAG = Au in €,

(3.2) Vi = 0 in
W = 0 onT,
and the equation
(3.3) a§+(Vxﬁ)F—y%:6 on I'..

REMARK 3.1. In a distribution sense, the adjoint system (3.2) cor-
responds to the another Stokes system with the body force is provoked
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by the velocity of the source system as follows:

—vAW+Vqg = —Ad in Q,
(3.4) V-w = 0 in Q,
W= 0 on T,

where ¢ is related to the adjoint pressure.

The appearance of this term is naturally identified by the spatial
setting for the orthogonal projector in Hy and the decomposition (2.6)
of L2(Q). Since P(—vA®W + A%) = 0 in Q, —vAw@ + Ail belongs to
H{, so that —vAwW + Ad = ~V g for some ¢ € H'(Q). Note that the
pressure and the adjoint pressure are uniquely determined up to additive
constants.

REMARK 3.2. For the convex functional as the case of ours, it may
be possible to evaluate the Hessian for the functional, so that one can
establish an algorithm to get a relatively stable global minimizer.

Since the optimality system is composed of a pair of elliptic systems
and an equation, it may be desirable to implement the solver by the con-
jugate gradient method. For the sake of completeness, let us prescribe a
brief description of a conjugate gradient algorithm. The conjugate gra-
dient method is originated as a solver to the finite dimensional problem
represented by the positive definite symmetric matrices. However, its
sphere has been extended to the infinite dimensional elliptic systems by
lots of theoretical and numerical experiments. It also has a variety of
variants in accordance with the raised situations(cf. [4], [5]). The basic
principal of the conjugate gradient methods lies in the enforcing of the
search directions as well as the step sizes to supplement the weakness
of the steepest gradient method. The basic scheme of the conjugate
gradient method contains the following steps:

To get an approximate solution for the system AZ = f, where AZ is
X-continuous and X-coercive, one can proceed in the following manner.

o Choose an initial guess &y for the system AZ = f
o Compute the initial residual 7y = f_'— AZy, and set &y = p.
ofor k=0,1,2, ..., evaluate the followings recursively until satis-
factory
7% (1?
< AGy, 0 >
> Tkl = T + pxdr  (upgrade the solution)

> pp = (step size)
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> Tk+1 = Tk — PrAFL  (upgrade the residual)
> Checking the stopping criteria; Return.
[P
175112
> Ogt1 =Tk + Br0k  (upgrade the search direction)

(evaluate the conjugate parameter)

> By =

For a stopping criterion, on may set ||7x|| < TOL for a given tolerance
TOL. For a special application of the conjugate gradient method to the
Stokes system, one may check on [7].

To seek an optimal pair (@, §) for the boundary control, the conjugate
gradient algorithm can be employed in two-fold; that is, to solve the
sequence of systems (3.1)-(3.2) in the one hand, and to evaluate the
minimizer of the gradient (3.3) in the other hand. Let us briefly describe
the algorithm proposed for a vorticity minimizer. In the evaluation of
the minimizer, one can use the fixed step size instead of the variable
step size. This reduces the numerical tasks considerably.

e (step I: initialization)

Given initial guess §® ¢ W, seek @9 = @(§?) and w® =
w(#@®) by solving (3.1)-(3.2) consecutively.

And then, initiate the residual by estimating "% = v7(g(®)
and set the descent direction by #(© = #0).

e (step II: update)

For a given fixed step size p > o, upgrade the control parameter
and the residual recursively, by

and
f(n—}—l) - F(n) _ pvj(g(n+1)) )

e (step III: stopping criteria; conjugate descent direction)
For a given tolerance TOL, check if ||7"*V||r, < TOL is satisfied.
If so, admit § ~ g™t as a desired control value. Otherwise,
compute the conjugate parameter by

o0 VIR,
I7™]1%,
and construct the conjugate search direction by
gt = {n) 4 g z(n)

Set n =n + 1 and Goto step 11
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It is evident that we have to solve the system (3.1) and its adjoint
system (3.2) to evaluate V.7 (§") at each iterations. That is, given g™,
we need to evaluate @™ = @(g(™) and @™ = w(@™) by solving (3.1)
and (3.2) consecutively. Furthermore, once an approximation for the
control is determined, then in order to check how the system is affected
by the control, it is necessary to evaluate the velocity of the system (3.1)
with the input of the estimated control at the final stage.
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