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EINSTEIN SPACES AND
CONFORMAL VECTOR FIELDS

DonG-Soo KM, YounGg Ho KiM, AND SEONG-HEE PARK

ABSTRACT. We study Riemannian or pseudo-Riemannian mani-
folds which admit a closed conformal vector field. Subject to the
condition that at each point p € M™ the set of conformal gradi-
ent vector fields spans a non-degenerate subspace of T, M, using a
warped product structure theorem we give a complete description
of the space of conformal vector fields on arbitrary non-Ricci flat
Einstein spaces.

1. Introduction

In 1925, Brinkmann studied conformal mappings between Riemann-
ian or pseudo-Riemannian Einstein spaces ([1]). Later conformal vector
fields, or infinitesimal conformal mappings on Einstein spaces were re-
duced to the case of gradient vector fields, leading to a very fruitful
theory of conformal gradient vector fields in general. Brinkmann’s work
has attracted renewed interest, especially in the context of general rela-
tivity ([2, 3, 4, 5, 9, 14, 17]), and the following local structure theorem
has been shown:

ProprosITION 1.1. (Kerckhove [9]) Let (M™,g) be an n-dimensional
Einstein but not Ricci flat pseudo-Riemannian manifold with Ric =
(n—1)kg(k # 0), which carries a conformal vector field. Here we denote
by Ric the Ricci tensor of (M",g). Suppose that the subspace A(p)
spanned by the set of conformal gradient vector fields at p € M™ satisfies
the following:

(a) A(p) is a non-degenerate subspace of T,M for each p € M,
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(b) the dimension m of A(p) is independent of the choice of the point
. :
Then (M™, g) is locally isometric to a warped product B™ (k)X s F, where
B™ (k) is an m-dimensional space of constant sectional curvature k and
the fibre (F, gr) is an Einstein space with Ricp = (n — m — 1)agr for
some constant o.

Generalizing Kerckhove’s results, the first two authors established a
local structure theorem as follows:

PROPOSITION 1.2. ([11]) Let (M™, g) be an n-dimensional connected
pseudo-Riemannian manifold. Suppose that there exists a nonzero con-
stant k € R such that

(a) dim Ax(M™, g) =m > 1,

(b) each subspace A(p) is a nondegenerate subspace of T, M.

Then, for a fixed p, € M™ the following hold:

(1) if dim A(p,) < m, then (M™,g) is locally isometric to a space
form B™(k),
(2) if dim A(p,) = m, then (M™,g) is locally isometric to a warped
product space B™(k) X5, F, where o is the height function for
a vector T in the pseudo-Euclidean space of B™(k) and the fiber
(F™~™ gr) is a pseudo-Riemannian manifold.
Furthermore, F satisfies the following:
(i) if(T,T) # 0, then Ay(F,gr) = {0}, where a = (T, T),
(if) if (T, T) = 0, then F carries no nontrivial homothetic gradient
vector fields.
In either case, we have A(M"™,g) = {6s|os € Ax(B™(k)),(S,T) = 0},
where 6g denotes the lifting of og.

For the definitions of Ax(M™,g), A(p) and or, see Section 2. Note
that if (F,gr) has constant sectional curvature o == (T, T), then the
warped product M™ = B™(k) X,, F has constant sectional curvature
k. This shows that the space of closed conformal vecior fields on M” =
B™(k) x4, F' is of dimension n + 1, which is greater than the dimension
m of {dslos € Ax(B™(k)),(S,T) = 0}. This shows that not all closed
conformal vector fields on the warped product need to be lifted from the
base.

On the other hand, the first two authors prove as follows that the
necessary condition on the fibre F' in (2) of Proposition 1.2 is sufficient
for any closed conformal vector fields on the warped product M™ =
B™(k) Xop F to be lifted from the base.
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PropOSITION 1.3. ([11]) Let (M™,g) be a warped product space
B™(k) X F, where T is a vector in the ambient pseudo-Euclidean
space of B™ (k). Suppose that the fibre (F, gr) satisfies the following:

(1) if (T, T) # 0, then Ay(F, gr) = {0}, where o = (T, T,

(2) if (I,T) = 0, then F carries no nontrivial homothetic gradient

vector fields.

Then (M™, g) satisfies the following:
A(M",g) = {Gslos € Ar(B™(k)),(S,T) = 0}.

In particular, each subspace A(p) is nondegenerate and of dimension m.

In this paper, we study Riemannian or pseudo-Riemannian manifolds
which admit a closed conformal vector field. Subject to the condition
that at each point p € M™ the set of conformal gradient vector fields
spans a non-degenerate subspace of T, M, using Proposition 1.2 and
Proposition 1.3 we give a complete description of the space of conformal
vector fields on arbitrary non-Ricci flat Einstein spaces (Theorem 3.3).

2. Closed conformal vector fields

We consider an n-dimensional connected pseudo-Riemannian mani-
fold (M™, g) carrying a closed conformal vector fields V. Hence there is
a smooth function ¢ on M™ such that

(2.1) VxV =¢X
for all X € TM, where V denotes the Levi-Civita connection on M™.
Then for every point p € M™ one can find a neighborhood U and a
function f such that V = V£, the gradient of f. Hence the Hessian V2 f
and the Laplacian Af of f are given respectively by
(2.2) V2if =¢g, Af=divV =n¢.
We denote by CC(M™, g) the vector space of closed conformal vector
fields. First of all, we state some useful lemmas for later use.
LEMMA 2.1. Let V be a non-trivial closed conformal vector field.
(1) Ify:[0,£) —» M™ is a geodesic with V(v(0)) = a+'(0) for some
a € R, then we have

(2.3) a-l—/ oy ‘(t).

(2) If V(p) = 0, then divV (p) = n¢(p) # 0, in particular, all zeros
of V' are isolated.
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Proof. See Propositions 2.1 and 2.3 in [16]. O

LEMMA 2.2. Let (M™,g) be an m-dimensional connected pseudo-
Riemannian manifold. Then the following hold:
(1) dimCC(M™,g) < n+1,
(2) if dimCC(M™,g) > 2, there exists a constant k € R such that
for all V € CC(M™,g), Vé = —kV, where n¢ is the divergence
of V.

Proof. See Proposition 2.3 in {16] and Proposition 4 in [7]. a

The model spaces B™(ea?)(e = £1) are the hyperquadrics S?(a?),
H?"(—a?), which are given by

S7(a®) = {w € RY {2, 2) = 1/a%},
HY(~?) = {z € Ri}H|(z, 2) = ~1/a%}.

For a fixed vector T in R**! or Rﬁii, let o be the height function in
the direction of T defined by or(z) = (T, z). Then one can easily show
that on B™(k),

(2.4) Vor(z) =T — kor(z)z,

(2.5) VxVor = —kopX

for all X € TB™(k)([9]). (2.5) implies that for any constant vector T
in R™*! or Rﬁﬁ, Vor is a closed conformal vector field on the hyper-
quadric B™(k),k = ea®. Furthermore, by counting dimensions, we see
that Vor represents every element of CC(B™(k)).

For the flat space form R} with index v, the vector field V defined
by V(z) = bx + c(b € R,c € R?) is a closed conformal vector field.
Obviously, by counting dimensions, we have

CC(R™) = {bx +clb € R, ceR"}.

For the space of conformal vector fields of pseudo-Riemannian space
forms, the authors et al. gave a complete description in [12].

Now we introduce a function space Ax(M™, g)(k # 0) and a symmet-
ric bilinear form ®; on the space as follows:

(26)  Ap(M",g) = {f € C(M)|VxVf=—kfX, XeTM)},
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(2.7) Oi(f,h) = (Vf,Vh)+kfh, f,he A (M",g).
For the non-flat space form B"(k)(k = ea?) (2.4) shows that
(2.8) @y (or,05) = (Vor,Vog) + koros = (T, S).

This implies that the symmetric bilinear form ®;, is just the usual scalar
product on the ambient pseudo-Euclidean space.
Recall that £y g denotes the Lie derivative of g with respect to V.

LEmMMA 2.3. ([21]) Let (M™, g) be a totally umbilic submanifold of a

pseudo-Riemannian space (M,g). If V is a conformal vector field on M
with £v g = 20g, then the tangential part VT of V on M™ is a conformal
vector field on M™ with

Lyrg =2{o +g(V, H)}g,

where H denotes the mean curvature vector field of M™ in M.

In [12], the authors et al. prove a converse of Lemma 2.3 for hyper-
surfaces of a pseudo-Riemannian space form.

For a point p € M™, let A(p) denote the span of the set of closed
conformal vector fields at p, that is,

Alp) = {V(p) € Tr(M)|V € CC(M", g)}.

Suppose that CC(M™, g) is of dimension m > 2. Then (2.1) and Lemma
2.2 imply that there exits a constant k¥ € R such that for all V e
CC(M™, g) with ¢ = (1/n)divV

(2.9) Vo =—kV,
so that we have
(2.10) VxVo=—-koX, XecTM.

Hence, if k is nonzero, then CC(M™, g) and A(p) may be identified with
Ap(M™, g) and {Vf(p)|f € Ax(M™, g)}, respectively.
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3. Einstein spaces admitting conformal vector fields

Let (M™,g) denote a non-Ricci flat connected Einstein space with
Ric= k(n—1)g(k # 0) which admits conformal vector fields. Recall that
by definition the Lie derivative of the metric g is given by Ly g(X,Y) =
9(VxV,Y) + g(X,VyV) for arbitrary tangent vectors X,Y, where V
denotes the Levi-Civita connection.

We denote by C(M™, g) the Lie algebra of all conformal vector fields
on (M™, g), and by I(M™, g) the subalgebra of isometric vector fields. It
is well known ([8, 22]) that if V is a conformal vector field on M"™ with
Lyvg=2fg, then

(3.1) VxVf=—kfX

for all X € TM. Hence we see that kV + Vf is an isometric vector
field. Since k # 0, this together with (3.1) shows that C(M™", g) may
be identified with I(M™, g) & Ax(M™,g) by the correspondence V —
(kV + V£, ).

If V is a closed conformal vector field on M™ with VxV = fX,
X € TM, then (3.1) shows that w = kV + Vf is parallel on M™.
Since (M™,g) is Einstein with nonzero scalar curvature k, w must be
trivial, that is, V = —%V f. Hence CC(M™, g) can be identified with
Ar(M™, g) by the correspondence V — f. Thus A(p) is the subspace of
T,M spanned by Vf(p), f € Ax(M",g).

Using Proposition 1.2, we can improve the Kerkhove’s results (Propo-
sition 1.1) as follows:

ProposITION 3.1. Let (M™,g) be a non-Ricci flat connected Ein-
stein space with Ric = (n — 1)kg(k # 0) which admits a nonisometric
conformal vector field. We denote by m the dimension of the space
Ar(M™, g). Suppose that each subspace A(p) is a nondegenerate sub-
space of T,M. Then for a fixed point p, € M™ one of the following
holds: '

(1) if dim A(p,) < m, then (M™, g) is locally isometric to B"(k).

(2) if dim A(p,) = m, then (M™,g) is locally isometric to a warped

product space B™ (k)X 5. F, where or € A (B™(k)) and the fibre
(F,gr) is an (n — m)-dimensional Einstein space with Ricp =
(n—m = 1T, T)gp.

Furthermore, F' satisfies the following:

(i) if (T, T) # 0, then F admits no nonisometric conformal vector
fields.
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(ii) if (T,T) = 0, then F admits no nontrivial homothetic gradient
vector fields.

In either case, Ax(M",q) = {Gslos € Ax(B™(k)),(S,T) = 0}, where
s denotes the lifting of og.

Proof. Since (M™,g) admits a nonisometric conformal vector field,
the space Ax(M™,g) is of dimension m > 1. Hence the proof follows
from Proposition 1.2 except the condition on the fibre F with (T',T) # 0.
Furthermore, the fibre (F, gr) is an (n — m)-dimensional Einstein space
with Ricp = (n — m — 1)agp, where a denotes (T',T). Since a # 0,
(3.1) shows that A, (F,gr) = {0} is equivalent to the condition that F
carries no nonisometric conformal vector fields. ) ]

REMARK. Suppose that n—m-—1 < 0 holds in Proposition 3.1, that is,
the dimension m of CC(M™, g) is greater than or equal to n — 1. Then
the proof of Proposition 2.3 in [11] shows that (M™,g) has constant
sectional curvature k. Thus (M™,g) is locally isometric to B™(k). In
particular, we have m = n + 1. This shows that if (M™, g) is not locally
isometric to B™(k), then we have m <n — 1, that is, n —m —1 2> 1.

Suppose that the fibre F' in Proposition 3.1 satisfies (T, T) = 0. Then
F carries no nontrivial homothetic gradient vector fields. For any con-
formal vector field V on F with £ygr = 2fgr, (3.1) shows that V f
is isometric, hence it is a homothetic gradient vector field. Thus Vf
vanishes identically, that is, V' is a homothetic vector field. Therefore
the fiber space F' carries no nonhomothetic conformal vector fields.
The following lemma is useful for the proof of our theorem.

LEMMA 3.2. Suppose that (M™, g) is a non-Ricci flat Einstein space
with Ric = k(n — 1)g(k # 0). Then, for any w € I(M",g) and 0 €
Ap(M™, g), we have (w, Vo) € Ax(M™, g) and V{(w, Vo) = [w, Vo].

Proof. For the proof, see p.18 in [8]. O

Now let’s describe the space C(M™,g) of a non-Ricci flat Einstein
warped product space (M™, g) = B™(k) X+, F'(k # 0) in Proposition 3.1.
Since the space C(M™, g) can be identified with I(M", g) ® Ax(M™,g)
and the function space Ax(M™, g) is given by Proposition 1.3, it suffices
to describe the space I(M™, g) of isometric vector fields.

THEOREM 3.3. Let (M™, g) be a non-Ricci flat Einstein warped prod-
uct space B™(k) x4, F(k # 0), where (F, gr) is an (n —m)-dimensional
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Finstein space with Ricp = (n—m — 1){(T, T)gr. Suppose that the fiber
F satisfies the following:

(i) if (I, T) # 0, then F admits no nonisometric conformal vector
fields,

(ii) if (T,T) = 0, then F admits no nontrivial homothetic gradient
vector fields.

Then the following hold:

(1) if (I,T) = 0 and F admits a nonisometric homothetic vec-
tor field, then M™ admits an isometric vector field w, with
(wo, Vor) = or and we have

I(M",g) = Rw, @ {w1|wy € I(B™(k)), (w1, Vor) = 0}
@ {@2|w2 € I(F, gr)},
(2) otherwise, we have
I(M™, g) ={w1|wy € I(B™(k)), (w1, Vor) =0}
& {welw, € I(F,gr)},
where for each i = 1,2, w; denotes the lifting of w;.

Proof. First, note that the condition (ii) on F implies that F admits
no nonhomothetic conformal vector fields. Furthermore, it follows from
Proposition 1.3 that (M™, g) satisfies the following:

(3.2) Ap(M™,g) = {Gslos € A(B™(k)),(S,T) =0},

where 5 denotes the lifting of og.

For 65 € Ax(M™,g) with S # 0, (2.4) and ®(0g,07) = (S,T) =0
imply that Vog(p) # 0 for any p € B™(k). This means that for each
p € B™(k), {Vos(p)|(S,T) =0} spans T, B™ (k).

Now we give a proof of Theorem 3.3 step by step in the following
procedures (a)—(d).

(a) For every w € I(M™,g) we have (w,Vor) = cor for some con-
stant c in case (1) and we have (w, Vor) = 0 in case (2).

For each p € B™(k), consider the tangential part w” of w on the
fiber {p} x F. Since {p} x F is a totally umbilic submanifold of M" with
mean curvature vector field —%VUT, we obtain from Lemma 2.3

2
(33) 2ngP = ——<’U), VUT>gpa
or
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where g, denotes the restriction of g to the fibre {p} x F. Because {p} x F
is homothetic to F and F admits no nonhomothetic conformal vector
fields, (3.3) shows that (w, Vor) = orh for some function h on B™(k).
Hence in case (2), it follows again from (3.3) that h must be trivial.
In case (1), using Lemma 3.2, we can prove that h is constant. In
fact, since (T,T) = 0, we have (w,Vor) = o7 for a vector T with
(T,T) = 0. Let S be an arbitrary vector with (S,T) = 0. Then we
also have (w, Vog) = o3 for a vector § with (S,T) = 0. Because w is
isometric and og, 03, o7 belongs to Ax(M™, g}, we obtain

Vos(of) = Vog{w,Vor)
= (vasw, VUT> + (w, VVUSVUT>
= —(Vog,Vverw) — korog
= —Vor(Vos,w) + (Vve,Vos,w) — korog
= —Vor(os) — kog{w,Vor) — korog
= —kogor,

where the last equality follows from (S,T) = 0. It follows from (3.4)
that (S,T) = 0. This together with (S,T) = 0 implies

Vos(h) = Vog(ZL) = 0.
oT
This completes the proof of (a) because Vog(p) with (S,T) = 0 gener-
ates the tangent space of B™(k) at each point p € B™ (k).

(b) For a linear map ¥ from I(B™(k)) into Ax(B™(k)) defined by
V(w) = (w, Vor), the image of ¥ is the subspace {os|(S,T) = 0}.

First of all, we show that the image of ¥ is contained in the sub-
space {og|(S,T) = 0}. It is easily seen that ¥ is well-defined by Lemma
3.2. Since (w, Vor) belongs to Ax(B™(k)), we see that (w,Vor) = og
for some S in the ambient pseudo-Euclidean space. Furthermore, we
have Vog = [w, Vor| by Lemma 3.2. Since or € Ax(B™(k)) we have
VwVor = —korw. On the other hand, V,,Vor = Vg, w+[w, Vor] =
Vverw+ Vog, so that we obtain

(3.5) Vyerw + Vog + kopw = 0.

Since w is isometric, taking the scalar products of the both sides of (3.5)
with Vo, we see that

q)k(O's, O'T) = <VCT,5, VO‘T> + kogor = 0.
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This shows that the image of U is contained in the m-dimensional sub-
space {og|(S,T) = 0}. :

Let w € Ker¥, that is, (w, Vor) = 0. For a fixed point p € B™(k),
(3.5) implies that

(36) (w(p), VCTT(p)> = 07 VVO'T(p)w = _kUT(p)w(p)'

Conversely, if w satisfies (3.6), then (3.5) together with (3.6) shows
that the function og = (w, Vor) satisfies og(p) = 0 and Vog(p) = 0.
Since g € Ag(B™(k)), Lemma 2.1 yields that og = {(w, Vor) vanishes
identically. This means that w € KerV is characterized by (3.6). Hence
the proof of Lemma 28 ([18], p.253) gives dimKer¥ < m(m — 1)/2.
Since dimI(B™(k)) = m(m + 1)/2, we see that Im¥ is of at least m-
dimensional. This completes the proof of (b).

(c) If (T\,T) = 0 and F carries a nonisometric homothetic vector
field u, then there exists an isometric vector field w, € I(M™, g) which
satisfies (w,, Vo) = or. Furthermore, we have

I(M",g) = Rw, & {w € I(M", g)|(w, Vor) = 0}.

Since (T',T) = 0, (b) shows that there exists an isometric vector field
wy on B™(k) such that (w;,Vor) = or on B™(k). We may assume
that the nonisometric homothetic vector field u satisfies £,9r = 2gF.
We put w, = w; — %, where w; and % denote the liftings of w; and wu,
respectively. Then it is easy to prove that w, is an isometric vector field
on M™ which satisfies (w,, Vor) = or on M™. For any w € I(M", g),
(w,Vor) = cor for some constant c. It gives (w — cw,, Vor) = 0. This
completes the proof of (c).

(d) For w € I(M™, g), we consider the decomposition w = w? + w¥,
where w? and w¥ are tangent to the leaves and to the fibers of M™,
respectively. Suppose that w satisfies (w,Vor) = 0. Then w® and
w¥ are isometric vector fields on M™. Furthermore, w? and w® are
liftings of wy € I(B™(k)) and we € I(F,gr), respectively. Obviously,

wy satisfies (w1, Vor) = 0.

For any liftings X,Y and U,V of X,Y € TB™(k) and U,V € TF,
respectively, one can see that £,r g(X, Y) 0. (w,Vor) =0 glves

£,59(U,V) = 0. Hence we have £,59(X,Y) =0and £ wrg(U, )
because w is isometric. We need to prove £,59(X,U) = U(X,w) to
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show that £,59(X,U) = 0 holds. Since Vog(og € A(M™, g)) gen-
erates the tangent space of the base B™(k), it suffices to show that
U(Vos,w) =0 for all 05 € Ax(M™, g). Lemma 3.2 implies that (Vosg,
w) belongs to Ax(M™,g), and hence (3.2) shows that it is a function
on the base B™ (k). This shows that w?(and hence w¥) is isometric on
M™.

Now we fix a point g, € F. Let w; be the restriction w?| Bx{q.} Of
w®B. Since (wy,Vor) = 0, we see that the lifting %, is an isometric
vector field on M™. Let 71 be the isometric vector field w? —w; on M™.
From the following:

Lusg(X,U) = U(X,w®) =0,
211,19(5(,0) = 0(5(,17)1) =0,

we see that U(X,m) = 0 for any X € TB™(k) and U € TF. Since
(X,m)=0o0n B x{g}, (X,n) is identically zero on M™. Hence n; =
wB — @, vanishes identically on M™.

For a fixed point p, € B™(k), let wa be the restriction w’[(, 1xp of
w®. Then the lifting 109 is isometric on M™. Let 1o denote the isometric
vector field w¥ — wy. For any og € Ap(M™, g) it is easy to show the
following:

Vog,Vor)

£ng(V05,U)=V0'5<’wF,0>—2< > (W, U) =0,
T
£4,9(Vos, U) = Vog (i, U) - 2@2@2, U) = 0.
T
Hence, from ®j(og,0r) = 0 we obtain for all o5 € Ax(M™,g)
(3.7) Vos(na, U) + 2kos(n, U) = 0.

Since Vog, os € Ap(M™, g) generates the tangent spaces of leaves and
(n2,U) = 0 on {p,} x F, (3.7) implies that (n,, U) = 0 for any U € TF,
and hence 7y = w’ — Wy vanishes identically on M™. In fact, let v(t) be
an integral curve of Vog on M™ with an initial point on {p,} X F and h
denote the function (1, ). Then (3.7) shows that the function y(t) =
h{~(t)) satisfies the first order differential equation y'(£)+2kf(t)y(¢) = 0,
where f(t) denotes og(y(t)). Because of the initial condition y(0) = 0,
the function y(¢) vanishes identically. This completes the proof of (d).

Combining from (a) to (d), the proof of our theorem is completed. ]
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