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MAXIMAL SPACE-LIKE HYPERSURFACES IN H}(-1)
WITH ZERO GAUSS-KRONECKER CURVATURE

QING-MING CHENG AND YOUNG JIN SUH

ABSTRACT. In this paper, we study complete maximal space-like
hypersurfaces with constant Gauss-Kronecker curvature in an anti-
de Sitter space H}(—1). It is proved that complete maximal space-
like hypersurfaces with constant Gauss-Kronecker curvature in an
anti-de Sitter space H$(—1) are isometric to the hyperbolic cylinder
H2(c;) x H'(c2) with § = 3 or they satisfy S < 2, where S denotes
the squared norm of the second fundamental form.

1. Introduction

Let M (c) be an n-dimensional connected semi-Riemannian manifold
of index s(>0) and of constant curvature c. It is called a semi-definite
space form of index s. When s =1, M7(¢) is said to be a Lorentz space
form. Such Lorentz space forms M7*(c) can be divided into three kinds
of semi-definite space forms: the de Sitter space S7(c), the Minkowski
space RT, or the anti-de Sitter space H}*(c), according to the sign of its
sectional curvature ¢ > 0, ¢ = 0, or ¢ < 0 respectively.

In connection with the negative settlement of the Bernstein problem
due to Calabi [4] and Cheng-Yau [8], Chouque-Bruhat et al. [9] proved
the following theorem independently.

THEOREM A. Let M be a complete space-like hypersurface in an

(n+1)-dimensional Lorentz space form M7 (c), ¢>0. If M is maximal,

then it is totally geodesic.
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As a generalization of this result, complete space-like hypersurfaces
with constant mean curvature in a Lorentz manifold have been investi-
gated by Akutagawa [1], Li [11], Montiel [12], Nishikawa [13], Baek and
the present authors [3], and Choi, Yang and the second author [16].

On the other hand, some generalizations of Theorem A for submani-
folds with codimension p>1 were given by Ishihara [10], Nakagawa and
the first author (7], and the first author [5]. Among them Ishihara [10]
proved that an n-dimensional complete maximal space-like submanifolds
with codimension p in an (n + p)-dimensional semi-definite space form
MPHP(c), ¢>0 is totally geodesic.

Now let us consider a complete maximal space-like hypersurface in
an anti-de Sitter space H}™!(—1) and denote by S the squared norm of
the second fundamental form of this hypersurface. Then Ishihara [10]
has also proved that the squared norm S satisfies 0 << S < n and the
hyperbolic cylinders H**(c;) x H*(c), k = 1,2,... ,n— 1 are the only
complete maximal space-like hypersurfaces in an anti-de Sitter space
H(—1) satisfying S = n.

Then it could be natural to investigate complete maximal space-like
hypersurfaces in H}*!(—1), which do not satisfy S =n. When n = 3,
the first author [6] gave several characterizations for such hypersurfaces
and it was proved that hyperbolic cylinders H?(c;) x H'(cz) are the
only complete maximal space-like hypersurfaces in H}(—1) with nonzero
constant Gauss-Kronecker curvature.

For the case that Gauss-Kronecker curvature is zero we have no result
until now. Since totally geodesic maximal space-like hypersurfaces were
known to have zero Gauss-Kronecker curvature, the following problem
was proposed by the first author [5].

PRrROBLEM. ([6]) Is it true that every complete maximal space-like
hypersurface in H}(—1) with zero Gauss-Kronecker curvature is totally
geodesic?

In this paper, we shall give two characterizations of such hypersur-
faces, which imply the above problem may be solved affirmatively.

THEOREM 1. Let M3 be a complete maximal space-like hypersurface
in an anti-de Sitter space H$(—1) with zero Gauss-Kronecker curvature.
Then, M3 satisfies S < 2, where S denotes the squared norm of the
second fundamental form.

From Theorem 1 and the result due to the first author [6], we obtain
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COROLLARY. Let M3 be a complete maximal space-like hypersurface
in an anti-de Sitter space Hj(—1) with constant Gauss-Kronecker curva-
ture. Then, M3 is isometric to the hyperbolic cylinder H?(c;) x H(c3)
with S = 3 or M3satisfies S < 2.

If a maximal space-like hypersurface in H{(—1) is not assumed to be
complete, we can assert the following:

THEOREM 2. Let M3 be a maximal space-like hypersurface in an
anti-de Sitter space Hi(—1) with zero Gauss-Kronecker curvature. If
the principal curvature functions are constant along the curvature line
corresponding to the zero principal curvature, then M? is totally geo-
desic.

2. Preliminaries

We consider Minkowski space Rg"’z as the real vector space R™*2
endowed with the Lorentzian metric (,,.) given by

n

(2.1) (@,Y) = D Tii — Tni1Ynt1 — Tni2lnia

i=1

for z, y e R"*2. Then, for ¢ > 0, the anti-de Sitter space H?H(—c) can
be defined as the following hyperquadric of R}

1
H ! (—c) = {meR;’“Lz x? = —E} .

In this way, the anti-de Sitter space H}*!(—c) inherits from (,) a metric
which makes it an indefinite Riemannian manifold of constant sectional
curvature —c. For indefinite Riemannian manifolds, refer to B. O’Neill
[15].

Moreover, if x € H(—c), we can put

T.H  (—¢) = {v e R}T?|(v,z) = 0}.

If VX and V denote the metric connections of R*? and H} ™ (—c)
respectively, we have

(2.2) Viw-V,w=clv,w)z
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for all vector fields v, w which are tangent to H}**(~c). Let
(2.3) ¢: M™ — HV ! (—c)

be a connected space-like hypersurface immersed in H} ™ (—c) and let V
be the Levi-Civita connection corresponding to the Riemannian metric
g induced on M™ from (,). Then the second fundamental form % and
the Weingarten endomorphism A of ¢ are given by

(2.4) Vow — Vow = Av, w),

(2.5) VoN =—Av and h(v,w) = —g(Av, w)N,

where v, w are vector fields tangent to M™ and N is a unit timelike
vector field normal to M™. So, the mean curvature H of the immersion
¢ is given by nH = traceA.

Let us denote by R the curvature tensor field of M. The Gauss
equation is given by

R(v,w)u

26 __ c{g(w, u)v — g(v, u)w} — {g(Aw, u)Av — g(Av,u) Aw},

where v, w and u are vector fields tangent to M™. The Codazzi equation
is expressed by

(2.7) - (Ved)w = (Vyd).
From (2.6), we have
(2.8) n(n —1)(r+c) =8 — (nH)?,
where § = [A|2 and n(n — 1)r denotes the squared norm of the second
fundamental form and the scalar curvature of M™, respectively.

We take a local field of orthonormal differentiable frames eq,... e,
on M™ such that

(29) Aei = )\iei, for ¢ = 1, 2, BRI (N

These \;’s are called principal curvatures of M™.
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Next we consider the case of n = 3. Since V., e; are tangent to M 3
and ey, es, ez is a local field of orthonormal differentiable frames, we

know that there are 9 functions ay, as, ... ,ag such that
(2.10)

Ve, 61 = arez + azes, Ve ea = —aje; + azes, Ve, e3 = —aze; — ases,
(2.11)

Ve,€1 = —agep + ages, Ve, €2 = asey + ases, Ve,e3 = —ager — asey,
(2.12)

Vese1 = agea — ares, Ve ea = —age; — ages, Ve,€3 = aze; + ages.

The following Generalized Maximum Principle due to Omori and Yau
will be used in order to prove our theorems.

GENERALIZED MAXIMUM PRINCIPLE. (Omori [14] and Yau [17]) Let
M™ be a complete Riemannian manifold whose Ricci curvature is bound-
ed from below and f € C2(M) a function bounded from above on M™.
Then for any € > 0, there exists a point p € M™ such that

f(p) Zsup f—e¢, |lgradf||(p) <e, V:iVif(p)<e,

fori=1,2,... ,n.

3. Proofs of theorems

In order to prove our theorems, we shall prepare two lemmas, firstly.

LEMMA 1. Let M3 be a space-like hypersurface in an anti-de Sitter
space H}(—1). If the principal curvatures \;’s are different from each
others on an open subset {1 of M3, then on Y, we have the following:

e1(A2) = aq(A2 — A1), e1(As) = az(As — A1),
ea(A1) = a1 (A1 — A2), ea(A3) = ag(As — A2),
ea(A1) = az(A1 — A3), ez(A2) = as(A2 — A3),
ag(M — A2) = az(A2 — A3) = ag(A1 — Asz),

where the above functions a;, t = 1,...,9 are given in section 2.
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Proof. Since these principal curvatures \;’s are different from each
other on the open subset Y of M, then on 4, \;’s are differentiable
functions. From Codazzi equation (2.7), we have

(Ve, A)ea = (Ve, A)er.
From (2.9), we obtain
Ve, (Ageg) — AV, ea = Ve, (Ae1) — AV e,
e1(A2)es + AoV ea — AV, ea = €2(A1)er + M Ve,e1 — AV, eq.
From (2.10) and (2.11), we infer

61(/\2)62 + /\2(—a161 + a363) + a1A1e1 — azAzes

= ea(A1)e1 + Ai(—aqes + ages) + aghrez — agAses.
Hence, we have
61(/\2) = a4()\2 - )\1), 62()\1) = al()\l - )\2), ag(/\g - /\3) = aﬁ()\l - /\3)

Similarly, we can prove the other also holds. Now we complete the proof
of Lemma 1. O

Since M3 is maximal and the Gauss-Kronecker curvature is zero, we
can assume A\; = A = —X3,A3 = 0. Then we are able to state the
following:

LEMMA 2. Let M2 be a maximal space-like hypersurface with zero
Guass-Kronecker curvature in an anti-de Sitter space H}(—1). If S is
not zero on an open subset i of M3, then on U, we have

(3.1) e1(ag) +ea(ar) = A\* = 1 4+ a? + a2 + 203 + a2,

1 1
(3.2) es(a1) + 561(a3) = a1a2 — 53044,

1 1
(3.3) es(as) — 562(03) = aza4 + 50103,
(3.4) e3(az) = —1+ a3 — a3,
(3.5) €1 (ag) = 62((13), €1 (a3) = —82(0,2), 83(&3) == 2a2a3,

where A = A\ # 0.
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Proof. Since M3 is maximal and the Gauss-Kronecker curvature is

zero, we may assume A\; = XA = —A2#0, A3 = 0. According to Lemma 1,
we have

(3.6) e1(A) = 2a4, ea(N) = 2a1, e3(A) = ag),

and

(3.7) . as = as, 2a9 = —a3z = ag, a7y =ag = 0.

From (2.10), (2.11), and (2.12), we can obtain the following formulas

(3.8) [e1, e2] = —aier + asez + 2azes,
(39) [61, 63] = —a92€1 — 5@362,

1
(3.10) [62, 63] = §a361 — Q2€9.

From the definition of the curvature tensor and the Gauss equation (2.6),
we have

(3.11) Ve, Ve,ea — Ve, Ver€2 — Vie, en1€2 = Rler, e2)e2 = (A — 1)ey
From (2.10) and (2.11), we have

(3.12)
vel ve €3 — vez Vel €2 — V[e1,ez]62

vel (a4€1 + a2€3) vez(_alel + a363) - V(—a151+a462+2a363)62

2

= {e1(aq) + e2(a1) —a? — a — 2a3 — a3 Je1 + {e1(az) — e2(as) }es.
From (3.11) and (3.12), we infer
e1(as) + ex(ar) = A% — 1 4+ a? + a3 + 243 + a3, e1(az) = ea(az).
Making use of a similar proof, we can obtain

e1(as) = —ea(az),

1
es(ar) + 561(613) =a1az — §a3a4,

es(az) = ~1+a; — a3,
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1

es(as) — 532(0,3) = aza4 + §a1a3a

e3(as) = 2aqas,

from
Ve, Veye1 = Ve, Ve €1 = Vi, o €1 = R(er, ez)er = (1 — Meg,

vel veg,el - ve3vel €1 — v[el,eg]el = R(ela 63)61 = €3,
Vez VeSCQ - Ves Vezeg — V[e2,e3]eg = R(ez, 63)62 = €3

and
Ve; Vee3 — Ve, Veses ~ Vg, o1€1 = Rles, er)es = eg.

Thus, the proof is completed. O

Proof of Theorem 1. From a result due to Ishihara [10], we know
S < 3. If supS = 0, then our theorem is true. Next we consider the
case of sup S > 0. Then let us construct an open subset 4 of M?3 in such
a way that
U= {pe M>3S(p) > 0}.

Since the Gauss-Kronecker curvature is zero and M3 is maximal, we can
assume
)\1:>\, /\22—)\ and )\330

Thus, on such an open subset 4, these principal curvatures A;, A2 and
Ag are different from each other. Hence, they are differentiable on 1.

Now we are able to assume that A > 0 on 4. From the Gauss equation,
we know that the sectional curvature is bounded from below by —1.
Applying the Generalized Maximum Principle due to Omori [14] and
Yau [17] in section 2 to the function S, we know that there exists a
sequence {px} C M3 such that

(3.13) klim S(px) =sup S, klim llgrad S||(px) =0,
(3.14) k]im sup V;V;S(px) <0, fori=1,2,3.

Since sup S > 0, we can assume {py} C 4. Ontl, S = A2+23+22 = 2)\%
Hence, we have

(3.15) sup S = lim S(px) =2 lim \(px)>.
k—oo k—o0
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From (3.13) and

(3.16) e1(A) = 2aq, ea(X) = 2a1), ez(A) = a2,

we have

(3.17) lim a1(px) =0, lim az(px) =0, lim as(px) =0.
k—o0 k—o0 k—o0

From (3.14) and S = 2A2, A > 0, we have

lim supeje; (A)(px) <0, k_lim sup eges (M) (pg) <0,

k—o00
3.18
(3.18) klim sup ezez(A)(pr) < 0.
—00

From (3.16), we have

€1€e1 ()\) = 261(0,4))\ + 2(1461 ()\),
262(0,1))\ —f— 2a162(A),
6383()\) = e3 (0,2))\ -+ a263()\).

Thus, we obtain

klim sup e1(aq)(px) < 0 and klim sup ez (aq )(pr) < 0.
From the formula (3.1) in Lemma 2, we have
lim A(py)* < 1.
k—oo
Hence, we infer sup S < 2. Now we complete the proof of Theorem 1.00

Proof of Theorem 2. If there exists a point p € M3 such that S(p) >
0, then by using the similar assertion as in the proof of Theorem 1, we
have that on an open subset Y, S(p) > 0 and these principal curvatures
are differentiable. From the assumption of Theorem 2, we have ay = 0
according to (3.6). From (3.4), we infer —1— a2 = 0. This is impossible.
Hence, S = 0 on M3, that is, M? is totally geodesic. Thus, Theorem 2
is proved. O
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