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ON YI'S EXTENSION PROPERTY FOR TOTALLY
PREORDERED TOPOLOGICAL SPACES

M. J. CamPION, J. C. CANDEAL, AND ESTEBAN INDURAIN

ABSTRACT. The objective of this paper is to show further results
concerning the problem of extending total preorders from a sub-
set of a topological space to the entire space using the approach
introduced by Gyoseob Yi.

1. Introduction

In the present paper we address the problem of extending a continuous
total preorder defined on a subset of a topological space, to the whole
space, keeping the continuity.

A motivation to analyze this problem is the search for interdisci-
plinary applications, mainly related with Economic Theory. Thus, in
several contexts of utility theory some properties of extension appear in
a natural way. It may happen, for instance, that we have local utility
functions that act on a small part of a space on which a preference has
been defined, and that we are interested in building a global utility func-
tion that may “glue” the local ones extending them to the whole space.
(see e.g., Section 4.1 in Candeal et al. [7]). It may also happen that a
preference (not necessarily representable through a utility function) has
been defined on some subset of a given set, and we ask ourselves if it
is possible to extend such preference to the entire set, satisfying some
desirable properties (e.g., the extension should be a continuous preorder
if the given preference was a continuous preorder on the subset). Despite
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both problems have an obvious relationship, they are, actually, of differ-
ent nature: The extension of total preorders or “preferences” (studied
in Yi [25] or Candeal et al. [6]) is quite different from the extension of
order-preserving real-valued maps or “utility functions” (also known as
the “lifting problem”, and considered, e.g., in Herden [15]) as we shall
discuss later.

Among the different families of extension properties that have been
considered in the literature, in the framework of preferences and utility
representations, we shall deal in the present paper with the approach
introduced by the Korean mathematical economist Gyoseob Yi (see Yi
[25]). Yi considered the problem of extending preferences from closed
subsets of a commodity space to the entire space.

It is a plain corollary of the well-known Tietze extension theorem
that continuous preferences admit an extension if they are defined on
closed subsets of a normal topological space and, in addition, they are
representable by continuous utility functions.

This context was generalized in Nachbin [20] through the concept
of a normally preordered space and the so-called Nachbin’s extension
theorem. (See, e.g., Ch. 5 in Bridges and Mehta [7]).

But even if a topological space is normal, it could happen, however,
that there exist continuous preferences that do not admit a utility rep-
resentation. Thus, for instance, a continuous total preorder defined on a
path-connected space is representable by a continuous utility function if
and only if it is countably bounded. (See Monteiro [19]). Also, in a non-
separable metric space it is always possible to define a continuous total
preorder without a continuous utility representation. (See Estévez and
Hervés [14]). Obviously, in those cases the problem of extending utility
functions becomes different from the problem of extending preferences.

The problem of extension of preferences, and the problem of repre-
sentability of preferences through continuous utility functions also have
a close relationship. Indeed in the case of metric spaces that are path-
connected, they are actually equivalent, as proved in Yi [25] and gener-
alized in Candeal et al. [6] to the separably connected case. However,
in the general case, both questions are no longer equivalent. Despite
the problem of representability of preferences through continuous util-
ity functions has been solved since long (see e.g. Ch. 3 in Bridges and
Mehta [7]), the general problem of characterizing Yi’s extension property
for preferences has not been solved, or at least no such characterization
has been published yet. (However, we must point out that a charac-
terization of the topologies that satisfy the Yi’s extension property has
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been announced to us by Prof. G. Herden.) In the present paper we fur-
nish some partial results related to such question. We introduce some
necessary and sufficient conditions for a topological space to have Yi’s
extension property.

Then we analyze the relationship between Yi’s extension property and
some properties that involve continuous representability of preferences.

In the last section, we analyze the analogous of Yi’s extension prop-
erty for the semicontinuous case, proving that semicontinuous extensions
always exist, even without asking the subsets considered to be closed (as
required in the “continuous” Yi’s extension property). This means, in
particular, that the original (continuous) Yi’s extension property is more
restrictive, because not every topological space satisfies the continuous
Yi’s extension property, but all satisfy its semicontinuous analogue.

2. Previous concepts and results

Let X be a nonempty set. For a preference X on the set X we will
understand a total preorder (i.e., a reflexive, transitive and complete
binary relation) defined on X. (If X is also antisymmetric, it is said to
be a total order). We denote z < y instead of —(y = z). Also z ~ y will
stand for (z S y) A (y 3 x) for every z,y € X.

The total preorder X is said to be representable if there exists a real-
valued order-preserving isotony (also called utility function) f:X —
R. Thusz Sy < f(z) < f(y) (z,y € X). This fact is characterized
(see e.g. Bridges and Mehta [5], p.23) by equivalent conditions of “order-
separability” that the preorder = must satisfy. Thus, the total preorder
< is said to be order-separable in the sense of Debreu if there exists a
countable subset D C X such that for every z,y € X with « < y there
exists an element d € D such that x < d X y. Such subset D is said to
be order-dense in (X, 3).

If X is endowed with a topology 7, the total preorder 3 is said to
be continuously representable if there exists a utility function f that is
continuous with respect to the topology 7 on X and the usual topology
on the real line R. The total preorder 3 is said to be 7-continuous if the
sets U(z) ={y € X , v <y} and L(z) = {y € X , y < ¢} are T-open,
for every x € X. In this case, the topology 7 is said to be natural or
compatible with the preorder <. (see Bridges and Mehta [5], p.19). The
coarsest natural topology is the order topology 6 whose subbasis is the
collection {L(z) :z € X}U{U(z) :xz € X}.
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Following Monteiro [19], a nonempty subset Y C X is said to bound
the total preorder = if for every € X there exist a,b € Y such that
aXz b

The total preorder 3 is said to be countably bounded if there exists a
countable subset D C X such that for every x € X there exist a,b € D
such that a 2z 3 b.

A powerful tool to obtain continuous representations of an order-
separable totally preordered set (X, 3) endowed with a natural topology
7 is the Debreu’s open gap lemma. (see Debreu [10], or Ch. 3 in Bridges
and Mehta [5]). To this extent, let 7" be a subset of the real line R. A
lacuna L corresponding to T is a nondegenerate interval of R that has
both a lower bound and upper bound in T" and that has no points in
common with 7. A maximal lacuna is said to be a Debreu gap. Debreu’s
open gap lemma states that if S is a subset of the extended real line R,
then there exists a strictly increasing function g : S — R such that all
the Debreu gaps of g(S) are open. Using Debreu’s open gap lemma, the
classical process to get a continuous real-valued isotony goes as follows:
First, one can easily construct a (non necessarily continuous!) isotony
f representing (X, X) when 3 is order-separable (see e.g. Birkhoff [3],
Theorem 24 on p.200, or else Bridges and Mehta [5], Theorem 1.4.8 on
p.14). Once we have an isotony f, Debreu’s open gap is applied to find a
strictly increasing function g : f(X) — R such that all the Debreu gaps
of g(f(X)) are open. Consequently, the composition F' =gof: X — R
is also a utility function representing (X, 3), but now F is continuous
with respect to any given natural topology 7 on X.

A topological space (X, 7) is said to be separable if there exists a
countable subset D C X that meets every nonempty T-open subset of
X. (D is said to be 7-dense.) Also, (X, 7) is said to be second countable
if the topology 7 has a countable basis.

A topological space (X, 7) is said to be path-connected if for every
a,b € X there exists a continuous map (a path) fo5 : [0,1] — X such
that f(0) =a , f(1) =b. Also, it is said to be separably connected if for
every a,b € X there exists a connected and separable subset C(a,b) € X
such that a,b € C(a,b). Path connected implies separably connected,
and this implies connected, but the converses are not true in general.
(see Candeal et al. [6]).

A topological space (X, 7) is said to have Yi’s extension property
(Yi [25]) if an arbitrary continuous total preorder defined on an arbitrary
7-closed subset of X has a continuous extension to the whole X.
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Similarly, (X,7) is said to satisfy the continuous representability
property (CRP) (see e.g. Candeal et al. [8]) if every continuous total
preorder on X admits a continuous utility representation. The first
studies on the CRP property are due to Herden, who used a different
terminology. In Herden [16], if a topological space (X, 7) satisfies CRP
then its topology 7 is said to be a useful topology. The structure of such
topologies was analyzed and characterized in Herden and Pallack [17].

The ordered sum of two disjoint totally preordered sets (Z7, 1)
and (Z3, Z2), that we shall denote (Zy, 31) + (Zo, 25) is defined to be
(Z1UZ2,=x), where x < yifand only if z,y € Z; and 2 3, y,or z € 73
and y € Zy, or z,y € Zy and = 22 y.

REMARK 2.1 From the definition of Yi’s extension property the fol-
lowing results follow:

(a) If (X, 7) is a topological space that satisfies Yi’s extension prop-
erty, and ¥ C X is a nonempty closed subset of X, then (Y,7y)
also satisfies Yi’s extension property, where 7y is the topology that
7 induces on Y. Indeed observe that a closed subset Z C Y in 7y is
closed in X so that a 7y continuous total preorder 3z defined on Z
is also T-continuous, so that it can be continuously extended to X, so
that in particular it has a continuous extension to Y.

(b) Let (X1, 7x,) and (X2, 7x,) be two nonempty Hausdorff topolog-
ical spaces. Let X be the product space X7 x X5. Let 7, be the
product topology on X. If (X, 7,) has Yi’s extension property, then
each factor (X;,7x,) (i =1,2) also satisfies Yi’s extension property.
This is a consequence of the above Remark 2.1 (a), since for each ele-
ments z; € X, £z € X it holds that X; is isomorphic to X7 x {z2},
a closed subset of (X, 7). Similarly X5 is isomorphic to {z1} x Xs.
(c) Suppose that (X, ) is the ordered sum of two disjoint totally pre-
ordered sets (X7, 31) and (X2, 32). Let X, X; and X, be endowed
with the corresponding order topologies, that we shall denote, respec-
tively, 6,6, and 6. If (X,6) satisfies Yi’s extension property, then
each (X;,0;) (i =1,2) also satisfies Yi’s extension property. Observe
that each (X;,0;) (¢ =1,2) is obviously isomorphic to a closed subset
of (X,0). Then apply Remark 2.1(a).

3. Yi’s extension property for continuous preferences

Let (X,7) be a Hausdorff topological space. (X,7) is said to be
normal (or T4) if for each pair of disjoint 7-closed subsets A,B C X
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there exists a pair of disjoint 7-open subsets A*, B* C X such that
A C A*, B C B*. (For basic topological definitions see Dugundji [11]).

It is well-known that this property of being normal is equivalent to
an extension property for continuous real-valued functions. This is the
“Tietze’s extension theorem”.

THEOREM 3.1. (Tietze’s extension Theorem) Let (X,7) be a Haus-
dorff topological space. The following two properties are equivalent:
(i) (X,7) is normal,
(ii) For every T-closed subset A C X, each continuous map f: A —
R admits a continuous extension F : X — R.

Moreover, if f(X) C [—a,a] for some a > 0 € R, then F can be chosen
so that F(X) C [-a,a].

Now suppose that (X, 7) is a normal topological space. An immediate
corollary of Tietze's extension theorem states that continuous and repre-
sentable preferences defined on closed subsets of X can be continuously
extended to the entire set X.

COROLLARY 3.2. Let (X,7) be a normal topological space. Let
S C X be a 7-closed subset of X. Let g be a continuous total preorder
defined on S. Then if Zg is representable through a continuous utility
function ug : S — R, it can also be extended to a continuous total
preorder Zx defined on the whole X.

Proof. Just observe that, by Tietze’s theorem, the utility function ug
admits a continuous extension to a map uyx : X — K. Then define Zx
on X asz 3x y < ux(z) <ux(y) (z,ye€X). O

Yi’s extension property was initially understood as an strengthtening
of Tietze’s extension property, in a direction in which we are not inter-
ested in extending utility functions, but only preferences. Observe that
Yi’s and Tietze’s extension properties are not equivalent in the general
case. This is because preferences could fail to be representable.

In the case of separably connected metric spaces, Yi’s extension prop-
erty is equivalent to topological separability:

THEOREM 3.3. Let (X,d) be a separably connected metric space,
where d stands for the distance function. Consider on X the metric
topology 74. The following properties are equivalent:

(i) (X, 7q) satisfies Yi’s extension property,
(i) (X,7q4) satisfies the continuous representability property (CRP),
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(ii) (X,7q4) is separable,

(iv) (X, 7q) is second countable,

(v) Every t4-continuous total preorder defined on X is countably
bounded.

Proof. See Corollary 3 in Candeal et al. [6]. O

EXAMPLE 3.4. A metric topology is always normal. Thus, a separa-
bly connected, nonseparable metric space has Tietze’s extension prop-
erty, but not Yi’s extension property.

Now we introduce some necessary conditions for a topological space
(X, 7) to have Yi’s extension property.

THEOREM 3.5. Let (X, ) be a topological space. Suppose that there
exists a subset Y C X endowed with a non-representable Ty -continuous
total preorder Xy (where Tyis the topology that 7 induces on Y') for
which there exists a T-connected and separable subset F' C X such
that FNY bounds Jy. Then Sy cannot be continuously extended to
X. Thus, if Y is in addition closed, then (X, 1) does not satisfy Yi’s
extension property.

Proof. Let us assume, by contradiction, that there is a continuous
extension Sx to the entire set X of the total preorder Jy defined on
Y. The restriction of 3x to F, that we denote <, is a continuous total
preorder on F' that will be continuously representable by the Eilenberg’s
representation theorem. (see Eilenberg [12], or Bridges and Mehta (5],
Theorem 3.2.5 on p.46). Given an element y € Y, let A(y) = {z €
F : 2=3xy} ; Bly)={te F : y 3x t}. Since Zx is continuous,
A(y) and B(y) are Tp-closed, where 7p is the restriction of the topology
7 to the set F. Since F NY bounds 3y, it is clear that A(y) and
B(y) are both nonempty. It follows then that there exists an element
yr € A(y) N B(y) C F since otherwise {A(y), B(y)} will provoke a
disconnection of F. Obviously, it follows by construction that yr ~x
y. Thus, a utility representation for the total preorder 2y on F will
immediately furnish a utility function for the total preorder =Xy on Y,
because each element y € Y has associated an element yg € F such that
yr ~x y. But this leads to a contradiction, since Jy was assumed to
be non-representable. d

REMARKS 3.6.
(i) Theorem 3.5 can also be restated in the following way:
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Let (X, 7) be a topological space. Let Y € X a nonempty subset
of X. Let 7y be the topology that 7 induces on Y. Let Zy be
a Ty-continuous total preorder defined on Y. Let FF C X be a
7-connected and separable subset such that F'NY bounds Jy.
If 2y has a continuous extension to the whole X, then Ry is
continuously representable.
As an immediate corollary, taking X = Y, we obtain Theorem 1 in
Monteiro [19}:
Let (X, 7) be a topological space. Let = be a 7-continuous total
preorder on X. If there exists a 7-connected and separable subset
F C X that bounds =, then 3 is representable by means of a
continuous utility function.
(ii) The above Theorem 3.5 has been inspired by Example 3.2 in
Yi [25]). Such example corresponds to a topological space known as
the “long rectangle”, that is a typical example appearing under the
conditions in the statement of Theorem 3.5. As a matter of fact, in
Theorem 3.5 we have shown that the situation shown in that Example
3.2 in Yi [25] is, so to say, “general”.
In the particular case of separably connected topological spaces, we can
furnish more necessary conditions for the satisfaction of Yi’s extension
property. To do so, first we need to introduce some previous definition
and lemma.

DEFINITION. Let (X,7) be a topological space. A subset ¥ C X
is said to be 7-discrete if the topology 7 that 7 induces on Y, is the
discrete one. In other words, this means that for every element y € Y
there exists a 7-open subset Oy C X such that O, NY = {y}.

THEOREM 3.7. Let (X, 7) be a separably connected topological spa-
ce. If there exists an uncountable subset Y C X that is T-discrete and
7-closed, then (X, 1) does not satisfy Yi’s extension property.

Proof. See Theorem 3 in Candeal et al. [6]. (For the more restrictive
case of path-connected topological spaces, a proof was given in Yi [25],
Theorem 3.3.) O

ExXAMPLE 3.8. A (sophisticated) example of the situation that ap-
pears under the statement of Theorem 3.7 is the following one, analyzed
in Corson [9], pp.5-9: Consider the Banach space Cp(X) of continuous
complex valued functions which vanish at infinity, on a locally compact
group X. If X is not metrizable then Cy(X), in its weak topology w,
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contains an uncountable w-discrete closed subset. Since (Co(X),w) is a
path-connected topological space, it is in particular separably connected.

LEMMA 3.9. Let (X, 7) be a separably connected topological space.
Let X be a total preorder on X. If X is countably bounded, then there
exists a T-connected and separable subset F' C X that bounds 2. More-
over, if 2 is T-continuous then it is continuously representable.

Proof. The existence of F is proved in Theorem 4 in Candeal et al. [6].
Once we have F, the continuous representability of = follows from the
second part of Remark 3.6 (i). a

COROLLARY 3.10. Let (X, 7) be a separably connected topological
space. Let X be a T-continuous total preorder defined on X. Then 3 is
continuously representable if and only if it is countably bounded.

Proof. (See also Corollary 2 in Candeal et al. [6]) It is plain that
continuously representable implies countably bounded. Indeed if u :
X — R is a continuous utility function that represents =, and that
we take bounded without loss of generality, then the countable subset
™ Q) Unu~1({inf u(X),supu(X)}) bounds <. The converse has been

stated in Lemma 3.9. O

REMARK 3.11. The result in Corollary 3.10 was already known for
the path-connected case. (see Theorem 3 in Monteiro [19]).

THEOREM 3.12. Let (X,7) be a separably connected topological
space. Let Y C X be a nonempty subset of X. Let 7y be the topology
that 7 induces on Y. Let Xy be a 1y -continuous total preorder defined
onY. If 3y is countably bounded and non-representable, then =y can-
not be continuously extended to X. Thus, if Y is in addition closed,
then (X, 7) does not satisfy Yi’s extension property.

Proof. Let D C Y be a countable subset that bounds 3y. Fix an
element d € D. For every other element d* € D let C(y4+) € X be
a connected and separable subset of X such that d,d* € C(gq4-). Tt is
clear that F' = |J;.cp Cfa,4+} is connected and separable, and obviously
D C FNY, sothat FNY also bounds Y. Therefore, by Theorem 3.5,
=y cannot be continuously extended to X. U

REMARKS 3.13.
(i) Observe, as an application of Lemma 3.9 and Corollary 3.10, that
the subset Y that appears in the statement of Theorem 3.12 cannot
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be separably connected. (In particular Y must be a proper subset of

X, ie,Y C X).

(ii) Since a continuously representable total preorder is obviously

countably bounded, Theorem 3.12 can also be restated in the fol-

lowing way, that is also a generalization of Corollary 3.10:
Let (X, 7) be a separably connected topological space. Let Y C X
a nonempty subset of X. Let 7y the topology that 7 induces
on Y. Let 2y be a 7y-continuous total preorder defined on Y.
Suppose also that <y can be continuously extended to the whole
X. Then Zy is countably bounded if and only if it is continuously
representable.

(ili) As an immediate corollary we obtain the following result:
Let (X, 7) be a separably connected topological space. Let Y C X
a nonempty subset of X. Let 7y the topology that 7 induces on
Y. Let =y be a Ty-continuous total preorder defined on Y. Then
if 3y is countably bounded and can be continuously extended to
the whole X, then <y is continuously representable.

(iv) If we take Y = X in the statement of Theorem 3.12, since Xy is

plainly extended to X (because Y = X) it follows that either <y fails

to be countably bounded or else it is representable. Equivalently, it is

representable if and only if it is countably bounded. Thus we reobtain

Corollary 3.10, now as a direct consequence of Theorem 3.12.

ExXAMPLE 3.14. (Long rectangle) The following example was issued
in Yi [25], Example 3.2 on p.550. It is noticeable that it appears under
the conditions of the statements of Theorem 3.5, and Theorem 3.12:
First, the long line L is constructed as follows (see e.g. Steen and See-
bach [23], p.71 or Monteiro [19]): Let  be the first uncountable ordinal.
Given any ordinal a € [0,2) insert the open interval (0, 1) of real num-
bers just between a and its successor a+ 1. The resulting set is the long
line L, ordered in the obvious natural way. On L we shall consider the
order topology. The long rectangle Ly is defined as I x [0, 1], endowed
with the product topology (where the closed real interval [0, 1] is given
the Euclidean topology).

The long rectangle is path-connected, so that it is in particular sep-
arably connected. The closed subset Y = L x {0,1} € L can be
given the non-representable continuous total preorder =y defined in Yi
[25], p.550. Such total preorder is obviously countably bounded since it
has a first point (0,0) and a last point (0,1). Therefore, this example
corresponds to the statement of Theorem 3.12.
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Now let F' = {0} x [0,1] € Lg. It is clear that F is connected and
separable in Lr. Moreover FF NY bounds Y. Therefore, this example
also corresponds to the statement of Theorem 3.5. Finally, observe that
Y is not separably connected, because it is indeed disconnected.

We must also point out that in Yi [25] it is said that: “Using the
intuition obtained in the above example, we provide a sufficient con-
dition on the space under which continuous extension is not possible”.
(See Yi [25], p.551). As a matter of fact, the result provided by Yi is
our Theorem 3.7 above (but stated only for the particular case of path-
connected topological spaces). However, the example provided does not
correspond to the statement of Theorem 3.7. This is because the sub-
set Y C Ly, even being uncountable and closed, does not inherit the
discrete topology. Actually, due to the presence of limit ordinals, it is
straightforward to see that no uncountable closed subset of Y inherits
the discrete topology. Consequently, Theorem 3.5 and Theorem 3.12 on
the one hand, and Theorem 3.7 on the other hand are, so to say, “of a
different nature”.

4. Extensibility and continuous representability

There are several contexts in which the satisfaction of Yi’s extension
property leads to some property of continuous representability of pref-
erences (as CRP or similars). In the present section we present further
results in that direction, showing that Yi’s extension property implies
some representability properties. In general, such representability prop-
erties do not lead to the satisfaction of Yi’s extension property, that is
stronger.

To start with, remember that Theorem 3.3 stated that in a separably
connected metric space, CRP and Yi’s extension property are equivalent.
However, in the general case CRP and Yi extension property are no
longer equivalent, as the Example 4.5 below will show.

To introduce the example, we need some preparatory definition and
results.

Let (L,6L1) be the long line endowed with its usual total order. (See
Example 3.14 above). Let Y = L x {0,1}. Endow Y with the total
preorder Jy defined as follows:

i) (a,0) <y (b,1) for every a,b € L such that either a # 0 or b # 0,

H) (O’ 0) ~Y (O’ 1)’

iii) (a,0) 3y (b,0) <= b 3L a for every a,b € L,
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iv) (a,1) 2y (b,1) <= a Z bfor every a,b € L. (Y,3y) is called
the double long line. Separably connected topological spaces have
a property of continuous ordinal representability in the double long
line, as the next lemma states.

LEMMA 4.1. Let (X,7) be a separably connected topological space.
Let 2 be a t-continuous total preorder on X. Let 0y denote the order
topology on the double long line Y. There exists a continitous map
F:(X,7) — (Y,0y) such that

T3y & F(z) Iy Fly) (z,y€X).

Proof. We can suppose without loss of generality that < is actually a
total order, because since 3 is 7-continuous, the quotient space (X/ ~) =
{[z] : « € X}, where [z] = {y € X : y ~ z} is also separably connected
with respect to the quotient topology induced by 7 on (X/ ~). Also,
again because 3 is 7-continuous, it is enough to find a continuous isotony
F:(X,0x) — (Y,8y), where 6x stands for the order topology on X.
Since fx is coarser than 7, (X, fx) is also separably connected. Indeed,
it is path-connected by Remark 2 (iv) in Candeal et al. [6]. Two cases
may occur now: If (X, X) is representable, there exists a continuous real-
valued isotony. But it is clear that the real line with its usual topology
and order can be also continuously embedded in the double long line
(Y,0y). If otherwise (X, 3) fails to be representable, Remark 3.2 (iii)
in Beardon et al. [2] states that it can be also contiruously embedded
in (Y, fy) through an isotony. (See also Theorem 5 in Monteiro [19], of
which this result is a generalization). This finishes the proof. O

DEFINITION. Let X be a nonempty set endowed with a topology 7.
The topological space (X, 7) is said to satisfy the countable chain condi-
tion (cce) if every family of pairwise disjoint T-open subsets is countable.

LEMMA 4.2. Let X be a Banach space endowed with its weak topol-
ogy w. Then (X,w) satisfles the countable chain condition ccc.

Proof. (See also Corson [9], p.8). Notice that a real Banach space in
its weak topology is homeomorphic in a natural way to a dense subset of
a product of copies of the real numbers. The real line R is second count-
able in its usual Euclidean topology, and a product of second countable
spaces satisfies ccc in the product topology. (See Engelking [13], Corol-
lary 2.3.18). Finally, a dense subset of a topological space that satisfies
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cce also satisfies cce in the induced topology. (See Szpilrajn-Marczewski
[24], or Lemma 4 in Corson [9]). O

LeEMMA 4.3. Let (X, 7) be a separably connected topological space
that satisfies the countable chain condition ccc. Then it also satisfies
the continuous representability property CRP.

Proof. By Lemma 4.1, if X is a 7-continuous total preorder on X,
there exists a continuous map F : (X,7) — (Y,0y) such that = 3
y <= F(z) 2y F(y) (z,y € X) where (Y, 3y) denotes the double
long line. By continuity of F, the subset F'(X) C Y is connected.

Let us prove now that F(X) is order-bounded in Y, that is, there
exist elements a,b € Y such that a <y z <y b for every z € X:
Suppose, by contradiction, that F'(X) is not order-bounded. For a given
ordinal number o < € let a + 1 be its follower, and call A, = {z €
Y : (a+1,0) <y z <y (0,0)}, Bo = {z €Y : (a,1) <y z <y
(v +1,1)}. It is clear that the family {F~'(A4)} U{F ' (Ba)}(a < Q)
is an uncountable family of nonempty and pairwise disjoint open subsets
of X, which contradicts the fact of (X, ) satisfying the countable chain
condition ccc. Finally, observe that every order-bounded subset of the
double long line is continuously isotonic to a subset of the real line. (See
Monteiro [19] or Beardon et al. [2]). This finishes the proof. O

THEOREM 4.4. Let X be a Banach space endowed with its weak
topology w. Then (X,w) satisfies the continuous representability prop-
erty CRP.

Proof. We already know that any compatible topology in a topologi-
cal vector space (in particular, the weak topology of a Banach space) is
separably connected. Now, by Lemma 4.2 we have that (X,w) satisfies
the countable chain condition ccc. And finally, according to Lemma 4.3,
(X, w) must satisfty CRP. O

ExaMPLE 4.5. Consider again (see Example 3.8 above) the Banach
space Co(X) of continuous complex valued functions which vanish at in-
finity, on a locally compact group X, where X is not metrizable. Endow
Co(X) with the weak topology w. It has been proved in Theorem 4.4.
above that all Banach spaces satisfy CRP with respect to the weak topol-
ogy. Thus (Cp(X),w) always satisfies CRP. However, as commented
in Example 3.8, if X is a non-metrizable locally compact group then
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(Co(X),w) fails to satisfy Yi’s extension property. Therefore the con-
tinuous representability property (CRP) does not imply Yi’s extension
property, in general.

Yi’s extension property is in some sense more restrictive that the
continuous representability property, as next result shows.

THEOREM 4.6. Let (X, 7) be a separably connected topological space
that has Yi’s extension property. Let Y be a closed subset of X such
that X \Y = {z € X : x ¢ Y} has at least two different elements. Let
Ty the topology that T induces on the subset Y. Then (Y, 7y ) satisfies
CRP.

Proof. A first proof was given for the more restrictive case of path-
connected spaces in Yi [25], Lemma 4.1 on p.554. The proof for the
separably connected case goes as follows:

Let Y/ = Y U{a, b} where a and b are two different elements in X \Y.
Let 7y the topology that 7 induces on Y’. Let =y be a 7y-continuous
total preorder on Y. We extend Xy to the my/-continuous total preorder
Zy defined on Y’ by declaring that a <y y <y’ b; a Zy b, for every
y € Y. Since, being (X, 7) Hausdorff and Y a 7-closed subset, the subset
Y’ is also 7-closed, it follows by Yi’s extension property that <y~ has
a continuous extension to the whole X. Let F be a 7-connected and
separable subset to which both a and b belong. (Such F exists because
(X, 7) is separably connected by hypothesis). It is plain that FF NY’
bounds =Xy, so that by Remark 3.6 (i), <y has a continuous represen-
tation by means of a utility function uy+ : Y/ — R. Considering now
the restrictions to Y of the preorder 2y and the map wuy-, it is then
obvious that =Sy also has a continuous utility representation. Therefore
(Y, 7y ) satisfies CRP. O

COROLLARY 4.7. Let (X, 7) be a separably connected topological
space that has Yi’s extension property. Suppose also that X can be
decomposed as the product space (X1, 7x,) % (X2, Tx,) of two nonempty
Hausdorff topological spaces such that each X; (i = 1,2) has at least
two different points, and T is the product topology on X. Then each
factor (X;,7x,) (¢ = 1,2) has the continuous representability property
CRP.

Proof. Tt is plain that each factor (X;,7x,) (¢ = 1,2) is isomorphic
to a closed subset Y; of X such that X \'Y; (i = 1,2) contains at least
two different points. The result follows now as a direct consequence of
Theorem 4.6. O
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COROLLARY 4.8. Suppose that (X,3) is the ordered sum of two
disjoint totally preordered sets (X1,31) and (X2, 32) such that each of
the sets X, and Xy has at least two different points. Let X, X; and
X5 be endowed with the corresponding order topologies, respectively
denoted 6,60, and 02. If (X, 0) is separably connected and satisfies Yi’s
extension property, then each (X;,6;) (i = 1,2) satisfies CRP.

Proof. Now it is clear that each (X;,0;) (¢ = 1,2) is isomorphic to a
closed subset of (X,8) such that X \ X; (¢ = 1,2) contains at least two
different points. O

ExXAMPLE 4.9. (Long line) The long line L (already considered in Ex-
ample 3.14 above) does not satisfy Yi’s extension property with respect
to the order topology 6r: First observe that (L,0;) is path-connected
(see e.g. Steen and Seebach (23], pp.196-197), hence it is in particular
separably connected. Moreover, L \ {[0,1)}, endowed with the induced
order topology, is plainly isomorphic to the entire long line L, and it
is closed with respect to 6y,. Since the long line is not representable by
means of a utility function, it does not satisfy CRP. Therefore L\ {[0,1)}
does not satisfy CRP with respect to the induced order topology, either.
Now we apply Theorem 4.6 to conclude that L fails to satisfy Yi's ex-
tension property.

ExaMPLE 4.10. (Replicant spaces) A topological space (X, ) is said
to be replicant if it can be decomposed as the product space (X1, 7x, ) X
(X2,7x,) of two topological spaces such that at least one of them (say,
e.g., (X1, 7x,)) is homeomorphic to the entire space (X, 7).

This is a typical situation encountered in Banach space theory, where
it is well-known that several classical Banach spaces are replicant. In
particular, the Pelczyniski decomposition theorem (see Pelczyriski [21])
states that:

Let X be the Banach space Cp or £, (1 < p < o), endowed with

the norm topology. Then every infinite-dimensional subspace Y C X

contains a subspace Z that is isomorphic to X and complemented in

X (i.e., X is isomorphic to a product Z x Z’ for some Z').

As an immediate consequence of Corollary 4.3, we have now that:
Suppose that (X,7) is a replicant, separably connected Hausdorff
topological space with at least two different points. If (X, 7) satisfies
Yi’s extension property, then it also satisfies the continuous repre-
sentability property CRP.
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The result given in Remark 3.13 (ii) says that if (X,7) is a sepa-
rably connected topological space and ¥ C X is a nonempty subset
of X endowed with the topology 7y that 7 induces on Y, then if a 7y -
continuous total preorder 2y defined on Y can be continuously extended
to the whole X, it holds that <y is countably bounded if and only if it is
continuously representable. This fact carries some consequences about
the relationship between Yi’s extension property and the satisfaction of
the continuous representability property CRP on closed subsets of X.

LEMMA 4.11. Let (X, 7) be a separably connected topological space
that has Yi’s extension property. Then the following assertions are
equivalent:

(i) Every T-continuous total preorder < x defined on X is countably
bounded.

(ii) Every T-closed subset Y of X satisfies CRP with respect to the
topology Ty that T induceson Y.

Proof. (i) = (ii): Every 7y continuous total preorder Zy defined on
any 7-closed subset Y of X has a 7-continuous extension 3 x to the whole
X, because (X, 7) has Yi’s extension property. By the hypothesis (i),
Zx is countably bounded, so that it is also continuously representable
by Remark 3. 13 (ii). It is then obvious that its restriction to Y, namely
2y, is also continuously representable. Therefore (Y, 7y ) satisfies CRP.

(i) = (i): Every 7-continuous total preorder Xx defined on X is
by hypothesis continuously representable because (X, 1) satisfies CRP.
Hence the preorder Zx is in particular countably bounded. O

THEOREM 4.12. Let (X,7) be a separably connected topological
space. Let the topology T be mnormal. Suppose also that every -
continuous total preorder 3 x defined on X is countably bounded. Then
the following assertions are equivalent:

(1) (X, 7) has Yi’s extension property.
(ii) Every T-closed subset Y of X satisties CRP with respect to the
topology Ty that 7 induces on Y.

Proof. (i) = (ii): If (X, 7) has Yi’s extension property, it follows
that every 7y -continuous total preorder ZJy defined on any 7-closed sub-
set Y of X has a 7-continuous extension ZXx to X. This extension is,
by hypothesis, countably bounded, hence continuously representable by
Corollary 3.10. Obviously its restriction to Y, namely =<y, is also con-
tinuously representable. Therefore (Y, 7y) satisfies CRP. (Actually, once
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we know that the extension is countably bounded, a direct application
of Lemma 4.11 also shows that (Y, 7y ) satisfies CRP.)

(ii) = (i): Let Y be a 7-closed subset of X, and Zy a 7y-continuous
total preorder defined on Y. Since (Y, 7y) satisfies CRP, there exists a
continuous utility function uy : (Y,7y) — R that represents Y. Thus
(X, 7) has Yi’s extension property as a direct consequence of Corollary
3.2. O

THEOREM 4.13. Let (X,7) be a normal and separably connected
topological space. Let the topology T be Lindel6f (i.e., every T-open
covering of X has a countable subcovering). Then the following asser-
tions are equivalent:

(i) (X,7) has Yi’s extension property.
(ii) Every T-closed subset Y of X satisfies CRP with respect to the
topology Ty that T induces on Y.

Proof. Just observe that Lindelof property implies that every T-conti-
nuous total preorder 3x defined on X is countably bounded: Actually,
let us assume that =x is not countably bounded. Suppose that X has
neither a first nor a last element with respect to Xx. (The arguments for
the cases in which X has either a first or a last element are analogous).
Being x € X let ag,b, € X be such that a, <x = <x by. Then the
family {(a.,b:) : © € X} is a T-open covering of X that does not ad-
mit a countable subcovering because otherwise 3x would be countably
bounded. But this contradicts the fact of the topology 7 being Lindeldf.
The result follows now as a direct consequence of Theorem 4.12. O

EXAMPLE 4.14. (Weak-star topology in dual Banach spaces) Let
X be a Banach space. Consider its dual Banach space X* endowed
with the weak-star topology w*. The topological space (X*, w*) is path-
connected, hence separably connected. It is also Lindel6f and normal.
(see e.g. Yi [25], p.550). It is also known that if X™* is separable with
respect to the norm topology, then every w*-closed subset C of X*
satisfies CRP with respect to the restriction to C' of the norm topology
on X*. (see Candeal et al. [6], Theorem 1). As a consequence of this
result and Debreu’s open gap lemma, it follows that C also satisfies CRP
with respect to the restriction to C' of the weak-star topology w* on X*,
because w* is weaker than the norm topology.

Therefore, by Theorem 4.13, it follows that if X* is separable with
respect to the norm topology, then (X*,w*) has Yi’s extension property.
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Observe also that this result is not a consequence of Theorem 3.3, since
weak-star topologies are non-metrizable in general. (Actually (X*,w*) is
metrizable if and only if X* is finite-dimensional with respect to its norm
topology. The proof is similar to that of Theorem 6.30 in Aliprantis and
Border [1].)

5. Semicontinuous extension properties

Till this point we have analyzed questions related to the continuous
Yi’s extension property that corresponds to the situation when every
continuous total preorder <g defined on a closed subset S of a topological
space (X, 7) has a 7-continuous extension ZIx on the whole X.

We may still ask ourselves about what happens for the semicontinuous
case, dealing with semicontinuous total preorders and extensions, in the
sense of the next definitions.

DEFINITION. Given a topological space (X,7) a total preorder 3
defined on X is said to be 7-lower semicontinuous if the sets U(z) =
{y € X, z < y} are 7-open, for every z € X. In a similar way, 3 is
said to be T-upper semicontinuous if the sets L(z) = {y € X , y < z}
are T-open, for every x € X.

The topology 7 is said to satisfy the semicontinuous representability
property (SRP) if every T-upper (respectively 7-lower) semicontinuous
total preorder = defined on X admits a numerical representation by
means of a 7-upper (respectively 7-lower) semicontinuous real-valued
order-preserving utility function.

Topologies satisfying SRP are also known as “completely useful to-
pologies” in the literature. (see e.g. Bosi and Herden [4]). In general
SRP implies CRP, but the converse is not true, as proved in Proposi-
tion 4.4 in Bosi and Herden [4], where some characterizations of topolo-
gies satisfying the semicontinuous representability property (SRP) were
achieved. A classical theorem by Rader [22] (see also Isler [18]) states
that “every second countable topology satisfies SRP”. As an immediate
consequence of this result and the fact “SRP = CRP”, we obtain that,
for the particular case of metric spaces we can add “(X, §) satisfies SRP”
to the equivalent conditions in the statement of Thecrem 3.3.

Next theorem shows that semicontinuous extensions of total preorders
are always available.

THEOREM 5.1. Let X be a nonempty set endowed with a topology .
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Let S be a nonempty subset of X, let g be the topology that T induces
on S, and let Zg be a Tg-upper(respectively, lower) semicontinuous total
preorder defined on S. Then there exists a T-upper (respectively, lower)

semicontinuous total preorder Zx defined on the whole X, that extends

Ss-

Proof. We give the proof for the upper semicontinuous case. For the
lower semicontinuous case, the arguments are analogous. Thus, let us
assume that <g is a 7g-upper semicontinuous total preorder defined on
S. By hypothesis, the subsets Lg(a) = {z € S : 2z <g5 a} (a € S) are
all 7g-open. Given a € S, define

Vo = U 0.

{Oer : ONSCLg(a)}
Observe that, by definition, V, € 7, for every a € S. Moreover
VanS=Lg(a) (a€S).

Actually, for every a € S, it happens that a ¢ V,, and V, is the biggest
T-open subset V C X such that VN A = Lg(a).
Also, being a,b € S it is clear by construction that

aZ3sh = V,CV.
Define now the total preorder Zx on X given by:
x3x Yy < forevery a€ Sitholdsthat yeV, = z €V,

The preorder Zx is T-upper semicontinuous since

L= | Ve

a€S |, 24V,

To conclude, let us prove that Xx extends Sg: Take a,b € S such that
a Zs b. Suppose also that b € V. , for some ¢ € S. This implies the
existence of a T-open subset O such that b€ O ; ONS C Lg(c). Thus,
in particular, it holds that b € Lg(c) since b € S, and also a € Lg(c)
because a € S,a Zg b. Therefore a € V, because a € S and V, N S =
Lg(c). Since this happens for every ¢ € S, we conclude that a 3x b. O
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COROLLARY 5.2. The semicontinuous representability property (SRP)
is hereditary. That is, if X is a nonempty set and 7 is a topology on
X satisfying SRP, then for any nonempty subset S C X, the topology
Tg that 7 induces on S also satisfies the semicontinuous representability
property SRP.

Proof. Let Zs be a Tg-upper semicontinuous total preorder on S.
By Theorem 5.1, there exists a 7-upper semicontinuous total preorder,
say Xx, defined on the whole X, of the total preorder <g given on S.
Since (X, 7) satisfies SRP, there exists a T-upper semicontinuous utility
function ux that represents < x. It is straightforward to see now that the
restriction of ux to S, that we denote Ug is a Tg-upper semicontinuous
utility function that represents Jg. O

REMARK 5.3. We have already mentioned that SRP implies CRP,
but the converse is not true, in general. (see Bosi and Herden [4]).
Using Corollary 5.2, we find now an indirect argument to prove this
last assertion: First observe that since SRP implies CRP, and SRP is
hereditary by Corollary 5.2, we obtain that:

If X is a nonempty set and 7 is a topology on X satisfying SRP, then

for any nonempty subset S C X, the topology 7g that 7 induces on

S also satisfies the continuous representability property CRP. (In

other words, SRP implies “CRP hereditarily”). If it were true that

the property CRP is equivalent to SRP, it would follow in particular
that the property CRP would be always hereditary. However, CRP
is not hereditary, in general, as next example shows.

EXAMPLE 5.4. (The topology of “point p included”). Let X be an
uncountable set. Select a point p € X. Consider on X the topology
7, of “point p included”, that is, given A C X, A €7, < A=
D orelse p e A. It is straightforward to see that the only continuous
total preorder on X is the trivial one that declares indifferent all the
elements belonging to X. Therefore (X, 7,) trivially satisfies CRP.

However, X \ {p} inherits the discrete topology, so that any total
preorder on X \ {p} is continuous. If we consider a well-ordering on
X \ {p}, it is clear that such well-ordering fails to have a representa-
tion (even discontinuous!) in the real line. (See e.g. Beardon et al. [2]
for a further account). Consequently, (X \ {p}, discrete topology) does
not satisfy CRP, so that (X, 7,) does not satisfy “CRP hereditarily”.
Neither it satisfies Yi’s extension property because, by the previous dis-
cussion, a well-ordering defined on the 7,-closed subset X \ {p} cannot
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be continuously extended to X.

Observe finally that, as a consequence of Corollary 5.2, we obtain
indirectly that (X, 7,) does not satisfy SRP. Obviously, this fact could
have been observed directly: For instance, a well-ordering on X such
that the first element is p is 7,-upper semicontinuous, but it fails to
have a representation (even discontinuous).

REMARK 5.5. Analyzing a bit more the last example, we find more
arguments to say that “Yi’s extension property” and the “continuous
representability property (CRP)” are of a different nature. As was
pointed out in Remark 2.1 (a), if a topological space (X, 7) satisfies
Yi’s extension property, then every nonempty closed subset ¥ C X also
satisfies Yi’s extension property with respect to the induced topology.
The analogous situation for CRP does not hold: In the above Example
5.4 we see that (X, 7,) satisfies the continuous representability property
(CRP), but X \ {p}, that is a closed subset of X, does not satisfy CRP
with respect to the induced topology.

REMARK 5.6. Observe also that in relation to representation proper-
ties continuity is weaker (less restrictive) than semicontinuity, because
SRP implies CRP but the converse is not true. However, in what con-
cerns extension properties, the restrictive one is Yi’s extension property,
that deals with continuity, whereas the analogous extension property for
semicontinuity instead of continuity always holds, as proved in Theorem
5.1. This is a new argument to say again that, in general, extension
properties and representability properties are of a different nature.
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